
Technical White Paper
（March, 2022）

POWERED BY BORAY DATA

�� � �� �� ��� � � � ��� � �� � � � � � � � �
� � � � �
 � �� � � ��
�	 �
� � � � � � � � � � �� � � � � � � � �

1. Introduction 2

42. SQL statements

43. Dynamic Query Optimization and Compilation

104. Metadata Optimization for Heterogeneous Data

115. Summary

43.1 Query Parsing and Basic Plan Generation

53.2 Predicate Push-Down

73.3 Adaptive Condensing

83.4 Query Execution

93.5 Query Plan Distribution

103.6 Code Generation and Compilation

103.7 Just-In-Time Native Code Compilation

1

POWERED BY BORAY DATA
Dynamic Query Optimization

Table of Contents

2

1. Introduction
RapidsDB is a fully distributed, ANSI-compliant, MPP, in-memory federated query system that is

designed to support complex analytical SQL queries. It has an advanced, rules-based and

cost-based SQL Compiler and Optimizer that is responsible for taking a user’s SQL query and

building the optimum query execution plan for that query.

The process of analyzing the query and its data to determine the best plan is called query optimi-

zation. Query optimization often involves rearranging parts of a query plan. The order in which the

various operations occur can be very significant for query performance. The best order depends on

the size and makeup of the data involved. Query optimization is a common feature of many

relational database management systems (RDBMS). As a federating query system, RapidsDB may

be called upon to integrate data from multiple heterogeneous sources in a single query. As a result,

this makes a query optimization process different than most database management systems

(DBMS).

Fig.1 Query Optimization of Most DBMS

SQL

Database Schema
Information

SQL Query

Optimizer

Statistics

Execution Plans

POWERED BY BORAY DATA
Dynamic Query Optimization

3

RapidsDB Federation Connectors are deeply integrated into the query optimization process,

allowing them to guide optimization decisions based on backend data statistics. Connectors are

also able to control how work is delegated to underlying data systems using the RapidsDB "Adap-

tive Condensing" model (see below). This allows RapidsDB to take maximum advantage of the

capabilities of federated data sources.

Fig.2 RapidsDB Query System

POWERED BY BORAY DATA
Dynamic Query Optimization

SQL

SQL Query

Optimizer

Execution Plans

Execution

Statistics

Statistics

Connector

Connector

Connector

Connector

Data

Schema

Data

Schema

Data

Schema

Data

Statistics

Data Sources

Knowledge-base

4

2 . SQL statements
A SQL statement is a series of words (keywords, table names, column names, etc.) describing a

database operation. RapidsDB accepts several types of SQL statements, including Data Definition

Language (DDL) statements and Data Manipulation Language (DML) statements.

DDL statements allow users to define the table structures and data types used to organize the data

in a database. CREATE TABLE is a common DDL statement. Once users have defined the struc-

tures and filled them with data, they use DML statements to manipulate and query the data. The

SELECT statement, used to query data, is the most common DML statement.

3 . Dynamic Query Optimization and Compilation
The SELECT statement allows a user to specify a query in terms of the results the user wishes to

produce. For the most part, the user is not expected to say how the query should be accomplished.

It is the job of the query planner to determine the best way to accomplish the query. This is a

complex process consisting of several phases.

3.1 Query Parsing and Basic Plan Generation
When a user enters a SELECT statement into RapidsDB, the RapidsDB query planner first parses

the statement to validate its syntax and identify the tables and columns involved. Because

RapidsDB is a federating query system, a single query may involve tables from several different

underlying data sources. The query planner identifies the source of each table, verifies all column

names and checks that the requested operations are valid.

After parsing and validating the query, RapidsDB decomposes it into simple building blocks such

as reading a table, filtering rows, joining, grouping, sorting, etc. These building blocks are orga-

nized internally in a tree-shaped data structure describing the operations to be performed and the

flow of data between them. The result is a sort of block diagram for how to accomplish the query.

This is called the query plan.

POWERED BY BORAY DATA
Dynamic Query Optimization

5

Fig.3 Basic/Naïve Query Plan

In general, an initial or “naïve” query plan is usually derived in a straightforward way from the

SELECT statement of a SQL query. A given query, however, can often be accomplished in numer-

ous different ways, which can take different processing time from a millisecond to hours. Therefore,

a naïve plan may be less than ideal.

For example, in the above query graph, we assume that data source A contains one table of 100

rows. Data source B and data source C each contains one table of 1,000 rows. The total number

of rows being fetched from the joins of A, B and C into the predicates would be a massive number

of 100 million rows (100 rows of A x 1,000 rows of B x 1,000 rows of C)!

3.2 Predicate Push-Down
In the SQL query example above, the SELECT statement includes several predicates. The

RapidsDB SQL Compiler and Optimizer will analyze all these predicates and determine which

ones can be pushed down to the underlying data source. This process is called predicate push-

down. The goal for the operation is to get the predicates closer to the underlying data source and

filter the data at an earlier point so that a query can be executed more efficiently.

select sum(B.x)
from A,B,C
where A.k = B.k and B.k = C.k and A.y < 5 and C.z = 8
group by B.g

A.k = B.k
B.k = C.k
A.y < 5
C.z = 8

C

A B

Grouping operator

Join operator

Fetch operator (blue subsystem)

Fetch operator (green subsystem)

Direction of eventual data flow

POWERED BY BORAY DATA
Dynamic Query Optimization

POWERED BY BORAY DATA
Dynamic Query Optimization

6

Fig.4 Basic Optimization

Once these predicates are pushed down, it will greatly reduce the rows fetched from each data

source. For example, in Fig.4, after the predicate of z=8 is pushed down to and applied at data

source C, the number of returned rows might be cut down from 1,000 rows to 500 rows. For y< 5,

the number of returned rows from data source A might be cut down from 100 rows to only 1 to 2

rows. Now instead of 100,000 rows, only 500 or 1,000 rows will be fetched for the join result of A

and C. After the query plan takes the join predicates of C.K = B.K and A.K = B.K, the number of

rows that come out of the joins of A, B and C will further be reduced, which makes the joins much

more efficient.

Predicate pushdown is a rule-based optimization. RapidsDB implements a number of valuable

rule-based optimizations as well as cost-based optimizations. Cost-based optimizations are very

prevalent in modern query systems. They enable a query plan to be configured in some way that

will be less expensive or more performant by reordering the operators and rearranging the query

plan.

select sum(B.x)
from A,B,C
where A.k = B.k and B.k = C.k and A.y < 5 and C.z = 8
group by B.g

A.k = B.k

C.k = B.k B

C A

Grouping operator

Join operator

Fetch operator (blue subsystem)

Fetch operator (green subsystem)

Direction of eventual data flow
y < 5z = 8

“predicate push-down”

POWERED BY BORAY DATA
Dynamic Query Optimization

7

The above query graph also shows the re-order of the joins. In the query graph of Fig.3, A and B

are joined first. And then the join result of A and B is joined to C. When these are normal inner

joins, they can actually be re-ordered so that the predicates can be leveraged at an earlier point to

dramatically cut down the number of rows of the join result. In this example, first of all, because A

and C both have predicates on them, it means that the join of A and C is probably going to return

fewer rows than the join of A and B. Secondly, as A and C are both coming from the blue database

system, they can be put together to offer some condensing opportunities when the query plan

goes to the next stage.

3.3 Adaptive Condensing
What makes RapidsDB unique is that it has an additional optimization phase, the condensing

phase, that is not found in most systems. The condensing phase is a part of the dynamic optimiza-

tion process. In this phase, elements of the query plan associated with a particular Connector are

coalesced into a special element called a "condenser." The condenser accepts or rejects plan

elements under control of the Connector, based on the capabilities and efficiencies of the associat-

ed data source. As the condensers are closely intertwined with the Connectors, it makes the

RapidsDB Federation Connectors super powerful by actively participating in the execution of a

query plan. Systems with simple data import APIs or wrappers usually simply pull data from one

data source. But in RapidsDB, each Connector communicates with its associated data source and

checks whether the underlying system is capable of taking on some of the workload.

8

Fig.5 Condensing

In this example, the Connector associated with data source C will check whether C can filter z=8.

If the answer is yes, the condenser will not only fetch data from data source C but also perform

the filtering operation. If the answer is no, which means data source C can only supply the raw

data without the ability to condense, then the data will be fetched from data source C and

processed in the RapidsDB Execution Engine. This approach of having the underlying data source

perform as much of the query as possible tremendously reduces the amount of data that has to be

transferred over a network and boosts the performance of the database.

3.4 Query Execution
When a user query is executed, each condenser is responsible for accomplishing the work of the

query elements it has accepted. It will generate an equivalent query to the underlying data source,

adapting to the data source in terms of syntactical rules, data types, operational functions, etc. All

predicates, joins or any other operations will be condensed into one single operation and pushed

down to the associated underlying data source. As some data sources are capable of performing

some or all of the work of a query independently of RapidsDB, it increases query performance by

reducing the amount of network transmission needed. Many data sources are capable of filtering

select sum(B.x)
from A,B,C
where A.k = B.k and B.k = C.k and A.y < 5 and C.z = 8
group by B.g

A.k = B.k

C.k = B.k B

C A

Grouping operator

Join operator

Fetch operator (blue subsystem)

Fetch operator (green subsystem)

Direction of eventual data flow
y < 5z = 8

POWERED BY BORAY DATA
Dynamic Query Optimization

9

Fig.6 Condensing

data at the source. Some RDBMS systems, such as Oracle or Postgres, are even able to aggre-

gate or join data at the source. In Fig.6 below, B is a simple fetch operator with no predicates. The

C and A fetch operators and associated predicates have all been condensed into a single opera-

tion, which is pushed down to the blue data source as a SQL statement (in the SQL dialect appro-

priate for that data source). The blue data source will filter and join the data for C and A before

sending the result over the network to the RapidsDB engine. The result of this pushed-down join

will in turn be joined with the data from B. The RapidsDB Execution Engine executes this second

join and completes the query by performing the Group By operation.

“SELECT A. k FROM A,C WHERE A.k = C.k AND z = 8 AND y < 5”

select sum(B.x)
from A,B,C
where A.k = B.k and B.k = C.k and A.y < 5 and C.z = 8
group by B.g

A.k = B.k

C.k = B.k B

C A

Grouping operator

Join operator

Fetch operator (blue subsystem)

Fetch operator (green subsystem)

External query (blue subsystem)

Data flow (blue subsystem)

Data flow (green subsystem)

RDBMS(“back-end”)

“pushdown!”

z = 8 y < 5

POWERED BY BORAY DATA
Dynamic Query Optimization

10

3.5 Query Plan Distribution
Since RapidsDB is a distributed query engine, query plans typically run in parallel on multiple

computers. Once the query plan is finalized, it is broken into fragments which are sent over the

network to the computers in the RapidsDB cluster.

Different parts of the query plan will run on different computers, based on which data Connectors

are involved and where the relevant data is located. The RapidsDB execution system works to

distribute each plan fragment to the most efficient location. In particular, it strives to run fragments

at the same location as the data they will use.

3.6 Code Generation and Compilation
Once all the parts of the query plan reach their run locations, they are ready for execution.

RapidsDB uses a compilation-based execution model. This produces higher performance than

systems that directly interpret query plans.

The RapidsDB query compiler processes the elements of the query plan and generates a program

to perform the query. The program is generated in the form of Java “bytecode,” a special internal

language of the Java Virtual Machine (JVM) used by the RapidsDB execution engine.

Bytecode is generated for query operations to be performed directly in the RapidsDB execution

engine, along with calls to library functions and User Defined Functions (UDFs) and also calls to

the appropriate data Connectors for any parts of the query being pushed down to the underlying

data sources. Once all code is generated and the various parts of it are linked together, it is submit-

ted to the JVM for execution.

3.7 Just-In-Time Native Code Compilation
As execution of the query proceeds, the JVM selectively compiles portions of the bytecode into the

native instruction set for the CPU. The most heavily used parts of the query program are further

POWERED BY BORAY DATA
Dynamic Query Optimization

11

optimized based on the actual flow of data through the query. The result is a highly optimized

custom native code program for accomplishing the query specified by the user’s SELECT state-

ment.

4 . Metadata Optimization for Heterogeneous Data
In general, optimizers of most traditional data systems have statistics of their data such as the

number of rows in a table or the distribution of values in various columns. These statistics are very

important to cost estimation. RapidsDB is a federated query system across multiple data sources,

which means it may or may not be able to obtain statistics from some of the underlying data sourc-

es. For example, for a RDBMS, it might have lots of statistics and information available for data

and tables. But a streaming data source most likely will not be able to provide any statistics. The

RapidsDB dynamic optimizer design generates optimization metadata independently by observing

and analyzing the execution of queries. In some cases, queries may be augmented with extra

operations that measure data metrics as queries are executed.

RapidsDB maintains an internal knowledgebase to record information about queries and data,

whether supplied by the underlying data sources or gathered by the RapidsDB Federation Connec-

tors during query execution. This knowledgebase helps the RapidsDB Optimizer to make optimiza-

tion decisions. When useful metrics or statistics are lacking, the RapidsDB Optimizer can learn

them on the fly and make educated guesses about queries based on past experience on related

data or similar queries.

5 . Summary
RapidsDB’s dynamic query optimization provides a lightweight but powerful dynamic processing

framework, which is adaptable to a very wide and extensible range of data sources. It allows the

RapidsDB Federation Connectors to fully participate in the optimization process and enables a

federated query to use different databases and schemas from entirely different systems in the

same SQL statement.

POWERED BY BORAY DATA
Dynamic Query Optimization

POWERED BY BORAY DATA
Dynamic Query Optimization

12

Since a single query may involve multiple data sources, the RapidsDB Optimizer works interactive-

ly with the Connectors to determine which operations from the plan should be pushed down to

which data source. Operations for a given Connector are condensed into a single building block,

for which the Connector and data source will be responsible. The remaining parts of the query plan

will be performed by the RapidsDB execution engine.

The knowledge-based model empowers Connectors to guide the dynamic optimization process

based on the different capabilities of the underlying data sources. It helps Connectors gather

heterogeneous statistics by dynamically inserting instrumentation into a condensed query, which

then can be pushed down to the related data source.

RapidsDB allows the user to view a collection of disparate data sources as a single database,

performing standard SQL queries against this federated view. The automated query optimization

process works to find the best way to process a given query, parceling out work to the different

data sources and efficiently integrating the results. This approach abstracts away the complexity of

the data preparation pipelines so that users can focus more on analyzing data to solve business

problems instead of spending tremendous amounts of time simply preparing data or rearranging

queries manually to adjust to different systems and maximize performance. It makes the integra-

tion of heterogenous data more efficient and agile.

POWERED BY BORAY DATA
Dynamic Query Optimization

13

Contact Us
Hong Kong Headquarters:

 Boray Data Technology Limited

 Address: Flat A, 12/F, MW Tower II, 5 Kimberley Street, Tsim Sha Tsui, Kowloon, Hong Kong

 Phone: 1-303-731-2699

 Email: info@rapidsdata.com

China Headquarters:

 Borrui Data Technology (Beijing) Co. Ltd.

 Address: 601B/F,Building 19(T1),Poly International Plaza,Zone7,Wangjing East Park,Chao

 Phone: 86-010-64700868

 Email: market@boraydata.com

US Lab:

 Address: 6253 Goddess Ct., San Jose, CA 95129, USA

 Phone: 1-303-731-2699

 Email: info@rapidsdata.com

Asean Regional Office (Singapore, Malaysia, Indonesia, Thailand, Philippines,

Vietnam):

 Address: 7 Temasek Boulevard #12-07 Suntec Tower One, Singapore 038987

 Phone: 65-90015111

 Email: yylai@rapidsdb.sg

yang District,Beijing, China

Dynamic Query Optimization
through RapidsDB Federation Connectors

POWERED BY BORAY DATA

For more information,please contact : info@rapidsdata.com , www.rapidsdb.com

@RapidsDB

Copyright C 2022 Boray Data Technology Ltd. All rights reserved.

