

Borrui Data

RapidsDB Unified JDBC Driver
Version 2.5

RapidsDB Unified JDBC Driver v2.5 Page 1 © Borrui Data Technology Co. Ltd 2018

Table of Contents
1. Changes From Prior Versions .. 3

1.1 Changes from Version 2.3 ... 3

1.2 Changes from Version 2.2 ... 3

1.3 Changes from Version 2.1 ... 3

1.4 Changes from Version 2.0 ... 3

1.5 Changes from Version 1.2 ... 3

1.6 Changes from Version 1.1 ... 3

1.7 Changes from Version 1.0 ... 3

2. Introduction .. 4

3. Architecture .. 4

3.1 Interface to RapidsDB Cluster ... 4

3.2 Interface to External Data Sources ... 5

4. Configuring RapidsDB for JDBC ... 6

5. Using the Unified JDBC Driver to Access RapidsDB .. 7

5.1 Driver Requirements ... 7

5.2 Basic Connection URL.. 7

5.3 Connection URL Options ... 7

5.3.1 Specifying the Host and Port Numbers of the RapidDB Nodes to Connect to 7

5.3.2 Specifying the Default Catalog and Schema ... 8

5.4 Specifying a Native Connection at Startup ... 9

5.5 Prepared Statement Support .. 10

5.6 Unsupported JDBC Features ... 11

5.7 Java Data Types Retrievable Through the JDBC Driver ... 14

5.8 SQL to Java Data Type Conversions Supported in the JDBC Driver .. 15

5.9 Sample JDBC Application .. 18

6. Using the Unified JDBC Driver to Access External Data Sources Directly ... 20

6.1 Overview ... 20

6.2 Opening a Connection to an External Data Source ... 20

6.3 Usage Notes .. 21

6.4 Example ... 21

7. Open-source Tools .. 21

7.1 JMeter (http://jmeter.apache.org/) ... 21

7.2 SQuirreL (http://squirrel-sql.sourceforge.net/) .. 22

7.3 DBVisualizer (https://www.dbvis.com/) ... 25

RapidsDB Unified JDBC Driver v2.5 Page 2 © Borrui Data Technology Co. Ltd 2018

8. Debugging ... 30

8.1 JDBC Driver .. 30

8.2 RapidsDB ... 32

RapidsDB Unified JDBC Driver v2.5 Page 3 © Borrui Data Technology Co. Ltd 2018

1. Changes From Prior Versions

1.1 Changes from Version 2.4
• Switched the MySQL JDBC Driver to the version 5 JDBC Driver

• This version is released as part of the R3.4.2 release

1.2 Changes from Version 2.3
• Included JDBC Drivers for MySQL, Oracle, Postgres, Greenplum and DB2 as part of the Unified

JDBC Driver jar file, which means that the user does not have to include JDBC Drivers in the class
path for the Unified JDBC Driver when using a native connection to those databases.

1.2 Changes from Version 2.2
• Fixed a problem where the Unified JDBC Driver was not correctly loading the Greenplum JDBC

Driver

1.3 Changes from Version 2.1
• Added support for the “connector” property as part of the connection url. The “connector”

property allows the user to specify that the Unified JDBC Driver should open a native connection
to the underlying database associated with the specified connector when starting up. This is
equivalent to the user sending a “USE CONNECTOR <connector>;” command to the Unified JDBC
Driver.

• Added support for the “USE CONNECTOR” command to be sent using any of the JDBC statement
methods: execute, executeQuery, or executeUpdate.

1.4 Changes from Version 2.0
• Fixed a problem where the Unified JDBC Driver was incorrectly stripping statement prefixes

from statements.

1.5 Changes from Version 1.2
• This is the first release of the Unified JDBC Driver which supports the ability to send JDBC

requests directly to external data sources, bypassing RapidsDB. The Unified JDBC Driver
continues to support access to the RapidsDB cluster.

• Version 2.0 is released as part of the R3.4.1 release

1.6 Changes from Version 1.1
• The RapidsDB JDBC Driver now supports prepared statements

• Version 1.2 is released as part of the RapidsDB 3.4 Release

1.7 Changes from Version 1.0
• The RapidsDB JDBC Driver supports Connection Balancing. This feature allows the user to

spread the JDBC connections over multiple nodes in the RapidsDB Cluster. With Connection

Balancing the user will be able to provide a list of DNS-resolvable host names or ip addresses

(for nodes in the RapidsDB cluster) as part of the JDBC connection url, and the JDBC Driver will

then round-robin connection requests over the specified set of hosts.

• The RapidsDB JDBC Driver now supports Statement.setMaxRows() to limit the number of rows

returned to the application. As a result of this change, tools such as SQuirreL and DBVisualizer

RapidsDB Unified JDBC Driver v2.5 Page 4 © Borrui Data Technology Co. Ltd 2018

(see section 6) will now correctly have the number of rows returned to the application limited

based on the row limits set by the tool.

• Version 1.1 is released as part of the RapidsDB 3.1 Release.

2. Introduction

The RapidsDB Unified JDBC Driver is a type 4 JDBC Driver that provides a programmatic interface for
Java applications to RapidsDB. A type 4 JDBC Driver is written entirely in Java and communicates with
the database system using the database system’s own network protocol. Because of this, the driver is
platform independent; once compiled, the driver can be used on any system.

This document describes how to install and use the RapidsDB Unified JDBC Driver, it is not intended to
be a guide for programming with JDBC. For more information on JDBC the user should refer to the
standard JDBC API documentation.

3. Architecture

3.1 Interface to RapidsDB Cluster
Figure 1 below shows the architecture of the RapidsDB Unified JDBC Driver and how it interfaces to
RapidsDB:

RapidsDB Unified JDBC Driver v2.5 Page 5 © Borrui Data Technology Co. Ltd 2018

Figure 1. RapidsDB JDBC Architecture

The JDBC Driver communicates with a node in the RapidsDB cluster (can be a DQC or DQE node) using a
Thrift-based messaging protocol (referred to as the RapidsDB Wireline Protocol). Within RapidsDB
there is a component called the Wireline Protocol Handler that is responsible for managing the Thrift-
based messaging interface. The Wireline Protocol Handler maintains session information for each active
JDBC Connection. The JDBC Driver can be configured on the client (see 4.2) to use any of the nodes in
the RapidsDB cluster, and there can be multiple JDBC Drivers communicating with different nodes in the
RapidsDB cluster.

3.2 Interface to External Data Sources
Figure 2 below shows how the RapidsDB Unified JDBC Driver communicates directly with external data
sources:

RapidsDB Unified JDBC Driver v2.5 Page 6 © Borrui Data Technology Co. Ltd 2018

Figure 2. Architecture with External Data Sources

When communicating directly with an external data source, the Unified JDBC Driver will retrieve the
connection url from the RapidsDB Connector definition, and it will then use the connection url
associated with that Connector to establish a direct connection to the external data source.

4. Configuring RapidsDB for JDBC
The JDBC Driver can communicate with any node in the RapidsDB cluster. The parameter named
“clientPort” in the RapidsDB cluster.config file allows the user to specify which port should be used for
communication with the JDBC Driver. The default port number is 4333. Below is a sample section from
the cluster.config file showing the “clientPort” parameter:

{
 "commonNodeConfig": {
 "enabled : true,
 "role" : "DQE",
 "clientPort" : 4333,
 "clusterPort" : 4334,
 “seEnabled” : false,
 “seArgs” : “”,
 "sshUsername" : "rapids",
 "sshPathToIdentityFile" : "~/.ssh/id_rsa",
 "installationDir" : "/opt/rdp",
 "workingDir" : "/opt/rdp/current",
 "startupCommand" : "sh ./startDqx.sh",
 "shutdownCommand" : "sh ./stopDqx.sh"
 },

RapidsDB Unified JDBC Driver v2.5 Page 7 © Borrui Data Technology Co. Ltd 2018

5. Using the Unified JDBC Driver to Access RapidsDB

5.1 Driver Requirements
The driver has been tested under Java runtime 8. It has not certified for use under prior versions of Java.

The driver will emit a warning message from SLF4J if there is no logging framework supplied by the client
application. The JDBC driver complies with the SLF4J logging API, but it is up to the end-user to provide a
logging framework compatible to SLF4J.

5.2 Basic Connection URL
Every JDBC driver requires a connection URL that not only identifies it as a connection to a RapidsDB
system, but can also configure that connection and set any default values it may use. All RapidsDB JDBC
drivers must use a connection URL that begins with:

Basic RapidsDB Connection URL

jdbc:rdp:

Connection URLs are case sensitive. The "rdp" part of the URL indicates that this is a connection to a
RapidsDB database. It will be recognised by the RapidsDB Unified JDBC Driver and ignored by JDBC
drivers to other systems (e.g., the Postgres JDBC driver). When used, the above URL will tell the
RapidsDB Unified JDBC Driver to connect to a RapidsDB node on localhost:4333.

The JDBC driver has a number of optional fields that can be specified to configure how the JDBC driver
connects and interacts with the RapidsDB server. These include:

• Setting a list of one or more host and port numbers of the nodes in the RapidsDB Cluster that
the JDBC Driver can connect to.

• Setting the default catalog and/or schema.

These fields need to be set in a specific order and with specific syntax. This is documented below.

5.3 Connection URL Options

Full RapidsDB Connection URL

jdbc:rdp:[//<host>[:<port>][,<host>[:<port>]…][/<catalog>[/<schema>]][?connector=<connector_name]

5.3.1 Specifying the Host and Port Numbers of the RapidDB Nodes to Connect to
The RapidsDB Unified JDBC Driver can connect to any DQC or DQE node on the port number configured
by the clientPort parameter for that RapidsDB node (see 3 above). When not specified, the JDBC driver
will connect to localhost:4333 by default. The user can provide a comma-separated list of host and port
numbers, and the JDBC Driver will round-robin connection requests across the specified set of hosts.
The use of multiple nodes allows for connection balancing across the specified set of hosts.

Specifying the list of host and port numbers must come immediately after the basic URL given above.
The host and port list is delineated by a double forwardslash ("//") before the hostname.

RapidsDB Unified JDBC Driver v2.5 Page 8 © Borrui Data Technology Co. Ltd 2018

The hostname can be a DNS-resolvable name of a host, or it may also be an IP address. Both IPv4 and
IPv6 addresses are valid, however an IPv6 address must be enclosed within square brackets because it
uses colons to delimit octets and the square brackets prevent the IPv6 address from being confused
with the port number.

The port number is separated from the hostname by a colon (":"). Specifying the port number is
optional.

Some valid examples of setting the hostname and port include:

jdbc:rdp://localhost
jdbc:rdp://localhost:4333
jdbc:rdp://127.0.0.1:4333 # uses an IPv4 loopback address
jdbc:rdp://[::1]:4333 # uses an IPv6 loopback address
jdbc:rdp://[2001:0db8:85a3:0000:0000:8a2e:0370:7334]:4333 # uses a specific IPv6 address
jdbc:rdp://192.168.10.10, 192.168.10.11, 192.168.10.12 # connection balancing over 3 hosts
 using the default port number

5.3.2 Specifying the Default Catalog and Schema
When using the JDBC driver, RapidsDB supports database sessions and therefore some degree of
statefulness. This allows a user to set the default catalog and/or schema, which will then change the
behavior of the system when subsequent queries are planned and executed. Setting the default catalog
and schema can be achieved either by specifying them as part of the JDBC connection URL, or by
sending the following explicit commands to RapidsDB:

• SET CATALOG catalogName;

• SET SCHEMA [catalogName .] schemaName;

When setting the schema, the catalog must either have been previously set, or the catalog name must
be specified as part of the SET SCHEMA command.

The value of the current catalog and schema can be retrieved by sending the following query via JDBC:

SELECT CURRENT_CATALOG, CURRENT_SCHEMA FROM RAPIDS.SYSTEM.TABLES LIMIT 1;

Setting a default catalog or schema will change the way that RapidsDB resolves unqualified tables (table
names that do not have the catalog and schema specified). Without a default catalog or schema set,
RapidsDB will search every catalog and schema for a table matching the table name in the query.
However with a default catalog and/or schema set, any unqualified table name will be converted into a
qualified table name with the default catalog and schema prepended before it. For example, if the
default catalog was RAPIDS and the default schema was SYSTEM and the query was SELECT * FROM
TABLES; then the unqualified table name TABLES would first be translated into the qualified name
RAPIDS.SYSTEM.TABLES.

After a default catalog or schema has been set, it is possible to go back to the original behavior of the
system by setting the current catalog and/or schema to null. e.g., SET CATALOG NULL;.

RapidsDB Unified JDBC Driver v2.5 Page 9 © Borrui Data Technology Co. Ltd 2018

Instead of executing these SET commands individually, one can specify the default catalog and schema
in the JDBC connection URL, and the JDBC driver will set these defaults for you automatically when the
connection is established.

Setting the default catalog/schema is specified in a hierarchical fashion using a single forward slash ('/')
to delineate these parameters. This grouping of parameters occurs after the hostname/port group (if
set).

In this field, it is possible to set the following combinations of defaults:

1. The default catalog.
2. The default catalog and schema

The ordering of fields in the above list is significant.

Some examples of setting these defaults can be seen below:

With the host/port being specified:

jdbc:rdp://localhost:4333/RAPIDS # sets the default catalog to RAPIDS
jdbc:rdp://localhost:4333/RAPIDS/SYSTEM # sets the default catalog to RAPIDS and schema to SYSTEM
jdbc:rdp://192.168.10.10, 192.168.10.11/RAPIDS/SYSTEM # set default catalog and schema with
 multiple hosts

Without the host/port being specified:

jdbc:rdp:/RAPIDS # sets the default catalog to RAPIDS
jdbc:rdp:/RAPIDS/SYSTEM # sets the default catalog to RAPIDS and schema to SYSTEM

5.4 Specifying a Native Connection at Startup
The user can set the “connector” property to instruct the Unified JDBC Driver to open a connection to an
external data source when starting up rather than opening a connection to the RapidsDB cluster. This is
equivalent to the user sending a “USE CONNECTOR” command (see 6.1) after the Unified JDBC Driver
has started up and connected to the RapidsDB Cluster.

Below are some example urls where the Unified JDBC Driver would open a connection to external data
source associated with the RapidsDB Connector named “PG1”:

jdbc:rdp:?connector=PG1

The following example sets up multiple hosts when connecting to the RapidsDB Cluster, with the default
catalog as “HADOOP” and the default schema as “PUBLIC” when connected to the RapidsDB Cluster:

jdbc:rdp://192.168.10.10, 192.168.10.11/HADOOP/PUBLIC?connector=PG1

The following example sets up the host ip address and port number when connecting to the RapidsDB
Cluster, with the default catalog as “HADOOP” and the default schema as “PUBLIC” when connected to
the RapidsDB Cluster:

RapidsDB Unified JDBC Driver v2.5 Page 10 © Borrui Data Technology Co. Ltd 2018

jdbc:rdp://192.168.10.10:54333/HADOOP/PUBLIC?connector=PG1

Notes:

1. When specifying the “connector” property, the Unified JDBC Driver must still be able to connect
to the RapidsDB Cluster in order to access the definition for the specified RapidsDB Connector.

2. When the “connector” property is set, all commands will be sent directly to the associated data
store, bypassing RapidsDB. In order to have commands sent to RapidsDB the user must execute
the command “use connector rapids;”. The result of executing this command is that the default
catalog and schema for the RapidsDB Cluster will be set

3. For native connections to any database other than MySQL (includes MemSQL), Postgres,
Greenplum, Oracle or DB2, the location for the JDBC Driver jar file for that database must be
included in the class path for the application using the Unified JDBC Driver. In the case of the
rapids-shell, the JDBC Driver file must be located in the drivers directory for the rapids-shell.

5.5 Prepared Statement Support
The RapidsDB Unified JDBC Driver supports creating prepared statements from the JDBC connection
using the standard Prepared Statement interface (e.g., connection.prepareStatement(“SELECT
* FROM t WHERE col1 = ?;”)). The Driver supports all methods of the PreparedStatement
interface except for the following:

• getParameterMetaData()

• setBytes(int, byte[])

• setBinaryStream(int, InputStream, int)

• setBinaryStream(int, InputStream)

• setBinaryStream(int, InputStream, long)

• setBlob(int, Blob)

• setBlob(int, InputStream)

• setBlob(int, InputStream, long)

• setNCharacterStream(int, Reader)

• setNCharacterStream(int, Reader, long)

• setNClob(int, NClob)

• setNClob(int, Reader)

• setNClob(int, Reader, long)

• setNString(int, String)

• setObject(in, Object, SQLType)

• setObject(in, Object, SQLType, int)

• setRowId(int, RowId)

• setSQLXML(int, SQLXML)

• setTime(int, Time)

• setTime(int, Time, Calendar)

• setUnicodeStream(int, InputStream, int)

• closeInCompletion()

• isCloseOnCompletion()

• getLargeUpdateCount()

• setLargeMaxRows(long)

• getLargeMaxRows()

https://docs.oracle.com/javase/8/docs/api/java/sql/PreparedStatement.html
https://docs.oracle.com/javase/8/docs/api/java/sql/PreparedStatement.html

RapidsDB Unified JDBC Driver v2.5 Page 11 © Borrui Data Technology Co. Ltd 2018

• executeLargeBatch()

• executeLargeUpdate(String)

• executeLargeUpdate(String, int)

• executeLargeUpdate(String, int[])

• executeLargeUpdate(String, String[])

As for regular JDBC Statements, the RapidsDB Driver only supports TYPE_SCROLL_INSENSITIVE for the
ResultSet. The RapidsDB Driver only supports forward iteration of ResultSets objects. (see item 23 in
Unsupported JDBC Features section).

5.6 Unsupported JDBC Features
As of version 1.2, the following features are not supported:

 Interface Topic Description

1 General Error Codes Exceptions thrown by the JDBC driver may not have
SQLState error codes or RapidsDB error codes.

2 Connection Auto-commit
transaction

Non-auto-commit transactions are not supported since
RapidsDB does not support them.

4 Connection Callable
Statements

Callable statements are not supported since RapidsDB does
not support them.

5 Connection Rollbacks Transaction rollbacks are not supported since RapidsDB
does not support non-auto-commit transactions.

6 Connection Savepoints Transaction savepoints are not supported since RapidsDB
does not support them.

7 Connection Network
Timeouts

Setting a network timeout
with connection.setNetworkTimeout() is not yet supported.

8 Connection Connection
pooling

Connection pooling within the JDBC driver is not supported.

9 Statement Multiple
Statements

Multiple statements separated by semicolons and executed
in a single call to execute() are not yet supported, however
explicit batching of non-SELECT statements
via statement.addBatch() and statement.executeBatch() is
supported.

10 Statement Update counts Update counts from executing non-select statements are
currently either set to 0, or -1 in the case of a ResultSet
being returned. This is because RapidsDB does not currently
return update counts when non-select statements are
executed.

RapidsDB Unified JDBC Driver v2.5 Page 12 © Borrui Data Technology Co. Ltd 2018

11 Statement closeOnComple
tion

Statement.setCloseOnCompletion() is not supported.

12 Statement Pooling
statements

Statement pooling via statement.setPoolable() is not
supported.

13 Statement Auto-generated
keys

Execution and retrieval of auto-generated keys is not
supported (e.g., via statement.execute(String sql, String[]
columns), since RapidsDB does not yet support retrieval of
auto-generated keys.

14 Statement Multiple
ResultSets

Calling Statement.getMoreResults() is not yet supported.

15 Statement Query Timeout Setting a query timeout via Statement.setQueryTimeout() is
not yet supported.

16 Statement Warnings The JDBC driver will not return warnings since RapidsDB
currently does not support warnings.

17 Statement Escape
Processing

Escape processing within the JDBC driver is generally not
supported.

18 Statement Fetch Direction The JDBC driver only supports a forward fetch direction of
ResultSets.

19 Statement Fetch Size The fetch size set for a JDBC statement is not currently used
by the driver.

20 Statement Max Field Size The driver currently does not adhere to any maximum field
size set via Statement.setMaxFieldSize().

21 ResultSet ResultSet
Updatability

ResultSets only support read-only operations and are not
updatable. Operations such
as insertRow(), deleteRow(), updateRow() and update<datat
ype>() related operations are not supported.

22 ResultSet ResultSet
Holdability

By default, ResultSets are kept open over commits. They do
not support "close at commit" semantics since RapidsDB
does not support this.

23 ResultSet ResultSet Type ResultSets currently only support forward-only iterating,
even
though Statement.getResultSetType() returns TYPE_SCROLL
_INSENSITIVE. This is because this type of ResultSet is
required for JMeter, however ResultSets do not yet support
backwards scrolling, or absolute or relative cursor
positioning via methods like

RapidsDB Unified JDBC Driver v2.5 Page 13 © Borrui Data Technology Co. Ltd 2018

• absolute()
• afterLast()
• beforeFirst()
• relative()
• first()
• last()
• previous()

24 ResultSet ResultSet
Sensitivity

The JDBC driver only supports ResultSets that are insensitive
to database changes. As such, related operations such
as refreshRow() are not supported.

25 ResultSet Data Types The JDBC driver does not support all possible data types
defined in the ResultSet interface definition. Refer to the
table below for supported and unsupported data types.

26 ResultSet Data Type
Conversions

The JDBC driver does not support all possible conversions
from SQL data types to Java data types. Refer to the table
below for supported and unsupported data type
conversions.

27 DatabaseMet
aData

Unsupported
Methods

The following methods are not supported:

• getBestRowIdentifier()
• getColumnPrivileges()
• getCrossReference()
• getExportKeys()
• getFunctionColumns()
• getFunctions()
• getImportedKeys()
• getIndexInfo()
• getProcedureColumns()
• getProcedures()
• getSQLKeywords()

28 DatabaseMet
aData

Methods
Returning
Empty Results
or Empty
ResultSet

The following methods are not fully implemented and
return empty ResultSets:

• getPrimaryKeys()
• getStringFunctions()
• getSuperTables()
• getSuperTypes()
• getSystemFunctions()
• getTablePrivileges()

RapidsDB Unified JDBC Driver v2.5 Page 14 © Borrui Data Technology Co. Ltd 2018

• getTimeDateFunctions()
• getUDTs()
• getVersionColumns()

29 ResultSetMet
aData

Column Name
And Label

RapidsDB and the JDBC driver currently do not distinguish
between column names and column labels. If an alias is
given for a column then that alias will be used as both the
column name and the column label.

30 ResultSetMet
aData

Originating
Table, Schema
And Catalog

RapidsDB and the JDBC driver currently do not provide the
catalog name, schema name or table name that each
column of a ResultSet came from. Instead, an empty string is
returned.

5.7 Java Data Types Retrievable Through the JDBC Driver

Data Type Supported? Notes

getArray() No Not supported in RapidsDB.

getAsciiStream() Yes

getBigDecimal() Yes

getBinaryStream() Yes Binary data types are not supported in RapidsDB.

getBlob() Yes Binary data types are not supported in RapidsDB.

getBoolean() Yes

getByte() Yes RapidsDB returns all integers with 64 bit precision.

getBytes() Yes Binary data types are not supported in RapidsDB.

getCharacterStream() Yes

getClob() No

getDate() Yes RapidsDB currently only supports timestamps, but these
can be retrieved as dates.

getDouble() Yes

getFloat() Yes RapidsDB returns all floating point numbers with double
length precision.

getInt() Yes RapidsDB returns all integers with 64 bit precision.

RapidsDB Unified JDBC Driver v2.5 Page 15 © Borrui Data Technology Co. Ltd 2018

getLong() Yes

getNCharacterStream() No RapidsDB does not support the NVARCHAR or NCHAR data
types.

getNClob() No RapidsDB does not support the NVARCHAR or NCHAR data
types.

getNString() No RapidsDB does not support the NVARCHAR or NCHAR data
types.

getObject() Yes

getRef() No RapidsDB does not support REFs.

getRowId() No RapidsDB does not support RowIds.

getShort() Yes

getShort() Yes

getSQLXML() No

getString() Yes

getTime() Yes RapidsDB currently only supports timestamps, but these
can be retrieved as times.

getTimestamp() Yes RapidsDB supports timestamps with nanosecond precision,
however the JDBC interface only supports precision to the
millisecond level.

getUnicodeStream() No

getURL() No

5.8 SQL to Java Data Type Conversions Supported in the JDBC Driver

JDBC
Method

SQL Data Type Notes

BOO
LEAN

INTE
GER

DECI
MAL

FLO
AT

TIMES
TAMP

VARC
HAR

INTE
RVAL

VAR
BINA
RY

getArray()

Data type not
supported.

RapidsDB Unified JDBC Driver v2.5 Page 16 © Borrui Data Technology Co. Ltd 2018

getAsciiStr
eam()

X X X X X X X

getBigDeci
mal()

X X X X

X

Conversion from
VARCHAR
supported if it
only contains a
numeric value.

getBinaryS
tream()

X

getBlob()

X

getBoolean
()

X X X X

X

Numerics: A value
of 0 is converted
to FALSE.
Everything else is
TRUE.

VARCHAR:
Conversion is
supported if the
string is a case
insensitive form
of "true" or
"false".

getByte() X X X X

X

Conversion from
VARCHAR
supported if it
only contains a
numeric value.

It is yet to be
determined
whether
overflowing
values should
return a modulus
or throw an
exception.

getBytes()

X

getCharact
erStream()

X X X X X X X

RapidsDB Unified JDBC Driver v2.5 Page 17 © Borrui Data Technology Co. Ltd 2018

getClob()

Data type not
supported.

getDate()

X X

Conversion from
VARCHAR support
if it only contains
a valid date string.

getDouble(
)

X X X X

X

Conversion from
VARCHAR support
if it only contains
a valid numeric
value.

getFloat() X X X X

X

Conversion from
VARCHAR support
if it only contains
a valid numeric
value.

getInt() X X X X

X

Conversion from
VARCHAR support
if it only contains
a valid numeric
value.

getLong() X X X X

X

Conversion from
VARCHAR support
if it only contains
a valid numeric
value.

getNChara
cterStream
()

Data type not
supported.

getNClob()

Data type not
supported.

getNString(
)

Data type not
supported.

getObject() X X X X X X X

getRef()

Data type not
supported.

getRowId()

Data type not
supported.

RapidsDB Unified JDBC Driver v2.5 Page 18 © Borrui Data Technology Co. Ltd 2018

getShort() X X X X

X

Conversion from
VARCHAR support
if it only contains
a valid numeric
value.

getSQLXM
L()

Data type not
supported.

getString() X X X X X X X

getTime()

X X

Conversion from
VARCHAR support
if it only contains
a valid time string.

getTimesta
mp()

X X

Conversion from
VARCHAR support
if it only contains
a valid timestamp
string.

getURL()

Data type not
supported.

getUnicod
e()

Data type not
supported.

getShort() X X X X

X

Conversion from
VARCHAR support
if it only contains
a valid numeric
value.

5.9 Sample JDBC Application

// Copyright (c) 2018 Boray Data Co. Ltd. All rights reserved.

// Instructions:
// * Make the directories [some_dir]/com/rapidsdata
// * Copy this content into a file at [some_dir]/com/rapidsdata/JdbcSample.java
//
// From [some_dir]:
// To compile: javac com/rapidsdata/JdbcSample.java
// To execute: java -cp .:/path/to/rapids-jdbc-1.0.0.jar JdbcSample
//

RapidsDB Unified JDBC Driver v2.5 Page 19 © Borrui Data Technology Co. Ltd 2018

// This example assumes an empty table exists called TABLE_A1
// with columns (A VARCHAR(128), B INTEGER),
// and that the JDBC driver can connect to a node listening on localhost:4333.
//
//
// This application will insert a row of data into the TABLE_A1 table and then
// read it back out. The returned data should be (A=RAPIDS DB, B=88888).
//
// To avoid a warning from SLF4J about logging defaulting to a no-operation,
// simply add a compatible logging framework to the class path when running
// the sample (e.g. any one of slf4j-nop.jar, slf4j-simple.jar, slf4j-log4j12.jar,
// slf4j-jdk14.jar or logback-classic.jar).

package com.rapidsdata;

import java.sql.*;

public class JdbcSample
{
 public static boolean doSample()
 {
 boolean bRet = false;
 String url = "jdbc:rdp://localhost:4333";
 String userName = "";
 String password = "";
 Connection conn = null;
 Statement stmt = null;
 try {
 // Connect to Rapids
 conn = DriverManager.getConnection(url, userName, password);

 // Get a Statement object from the connection
 stmt = conn.createStatement();

 // TABLE_A1 has two columns, A as VARCHAR and B as BIG INTEGER
 // Insert a row in the table
 stmt.executeUpdate("INSERT INTO TABLE_A1 VALUES ('RAPIDS DB', 88888);");

 // Execute an SQL statement "Select...".
 ResultSet rs = stmt.executeQuery("SELECT A, B FROM TABLE_A1;");

 ResultSetMetaData metaData = rs.getMetaData();
 int numberOfColumns = metaData.getColumnCount();
 while (rs.next()) {
 for (int i = 1; i <= numberOfColumns; i++) {
 System.out.print(String.format("%s=", metaData.getColumnName(i)));
 if (metaData.getColumnTypeName(i).equalsIgnoreCase("VARCHAR"))

RapidsDB Unified JDBC Driver v2.5 Page 20 © Borrui Data Technology Co. Ltd 2018

 System.out.print(String.format("%s, ", rs.getString(i)));
 else if (metaData.getColumnTypeName(i).equalsIgnoreCase("INTEGER"))
 System.out.print(String.format("%d, ", rs.getInt(i)));
 else if (metaData.getColumnTypeName(i).equalsIgnoreCase("BIGINT"))
 System.out.print(rs.getLong(i) + ", ");
 } // end for-loop
 System.out.println(" ");
 } // end while-loop
 rs.close();
 stmt.close();
 conn.close();
 bRet = true;

 } catch (SQLException se) {
 System.out.println(se.toString());
 }
 return bRet;
 }

 public static void main(String[] args)
 {
 doSample();
 }
}

6. Using the Unified JDBC Driver to Access External Data Sources
Directly

6.1 Overview
The RapidsDB Unified JDBC Driver allows the user application to establish a native connection directly to
any external data source that can be accessed via a RapidsDB Connector using the native JDBC Driver for
that external data source. When communicating directly with an external data source, the Unified JDBC
Driver will retrieve the connection url for the external data source from the RapidsDB Connector
definition for that data source, and it will then use that connection url to establish the direct connection
to the external data source. After establishing the connection to the external data source, the RapidsDB
Unified JDBC Driver will operate in pass-through mode and send all requests directly to the external data
source via the native JDBC Driver, and as such it will expose all of the features and capabilities supported
by the native JDBC Driver.

6.2 Opening a Connection to an External Data Source
To open a connection to an external data source the user application must execute the following SQL
statement:
 USE CONNECTOR <Connector Name>;

RapidsDB Unified JDBC Driver v2.5 Page 21 © Borrui Data Technology Co. Ltd 2018

The RapidsDB Unified JDBC Driver will retrieve the JDBC connection url for the native JDBC Driver from
the Connector definition in RapidsDB. The RapidsDB Unified JDBC Driver will then use that connection
url to open a connection to the external data source. After successfully opening the connection to the
target data source, the RapidsDB Unified JDBC Driver will route all subsequent commands directly to the
JDBC connection just opened, bypassing RapidsDB completely.

6.3 Usage Notes
1. For native connections to any database other than MySQL (includes MemSQL), Postgres,

Greenplum, Oracle or DB2, the location for the JDBC Driver jar file for that database must be
included in the class path for the application using the Unified JDBC Driver. In the case of the
rapids-shell, the JDBC Driver file must be located in the drivers directory for the rapids-shell.

2. The RapidsDB Unified JDBC Driver requires that the RapidsDB Cluster is available in order for the
RapidsDB Unified JDBC Driver to access the Connector information associated with any external data
source.

3. To switch back to using RapidsDB as the target data source, the following command must be sent:
USE CONNECTOR rapids

6.4 Example
The following example assumes that a connection has already been established with the RapidsDB
Cluster. This example uses the following Connector to a Postres database:

CREATE CONNECTOR PG2 TYPE POSTGRES WITH
CONNECTIONSTRING=’jdbc:postgresql://boray03:5432/tpch’, USER=’postgres’, PASSWORD=’postgres’
NODE BORAY03 NODE BORAY04 CATALOG * SCHEMA * TABLE * ;

1. Open the connection to Postgres:

// Execute the Use Connector command to open connection to Postgres database
ResultSet rs = stmt.executeQuery("USE CONNECTOR PG2;");

2. All subsequent requests sent directly to Postgres using the Postgres JDBC Driver, and as such the
features supported are limited to those supported by the Postgres JDBC Driver.

3. Re-establish connection to RapidsDB Cluster:

// Execute the Use Connector command to open connection to Postgres database
ResultSet rs = stmt.executeQuery("USE CONNECTOR rapids;");

4. All subsequent requests sent to the RapidsDB Cluster, and as such the features supported are
limited to this discussed in section 5 of this document.

7. Open-source Tools

7.1 JMeter (http://jmeter.apache.org/)
To set up a JMeter test plan using JDBC, please refer to steps documented at this location:
http://jmeter.apache.org/usermanual/build-db-test-plan.html

http://jmeter.apache.org/
http://jmeter.apache.org/usermanual/build-db-test-plan.html

RapidsDB Unified JDBC Driver v2.5 Page 22 © Borrui Data Technology Co. Ltd 2018

To configure the RapidsDB Unified JDBC Driver follow these steps:

• Under menu "Edit", select "Add" then "Config Element".

• Then select “JDBC Connection Configuration”.

• At “Database URL:” enter "jdbc:rdp://<address>:<port>"

Where <address> is the ip address for the RapidsDB node to connect to
<port> is the port number being used to communicate with the RapidDB node (default is 4333)

• At “JDBC Driver Class”, enter com.rapidsdata.jdbcdriver.Driver

• At “Username:” enter "root" No password

7.2 SQuirreL (http://squirrel-sql.sourceforge.net/)
The first step is to add the RapidsDB Unified JDBC Driver:

• From the menu "Drivers", select "New Driver"

• Enter driver name e.g. "RapidsDB"; at the "Example URL:" field, enter "jdbc:rdp:"

• Select the tab labeled as "Extra Class Path", select "Add" then enter the path where the driver is
(e.g. C:\Users\Dave\rapids\JDBC) and press "Open". See Figure 2 below.

Figure 2. SQuirreL – Adding a Driver (1)

• Then press the "List Drivers" button, the string value "com.rapidsdata.jdbcdriver.Driver" should
show up at the "Class Name" field. See Figure 3 below.

http://squirrel-sql.sourceforge.net/

RapidsDB Unified JDBC Driver v2.5 Page 23 © Borrui Data Technology Co. Ltd 2018

Figure 3. SquirreL – Adding a Driver (2)

Notes:

1. If the connection url to be used for the Alias (see next step) includes the
?connector=<connector> option to establish a native connection (see 5.4) to another database,
or if a “use connector <connector>” command is going to be used to open a native connection
(see 6.), then if the native connection uses a JDBC Driver other than one of the following:
MySQL, Postgres, Greenplum, Oracle or DB2, then the path to that JDBC Driver must also be
included in the Extra Class Path setting. The screen below shows an example of including the
JDBC Driver for Hive:

RapidsDB Unified JDBC Driver v2.5 Page 24 © Borrui Data Technology Co. Ltd 2018

The next step is to set up a connection to RapidsDB:

• From the menu "Aliases", select "New Alias" and enter the name for the Alias, e.g. "RapidsDB".

• At the "Driver:" dropdown, select the driver created from the above step, e.g. "RapidsDB"

• The "URL: should have "jdbc:rdp:", if not, enter "jdbc:rdp:" Then add "//<address>:<port>"

• Leave the User blank. See Figure 4 below.

Figure 4. SQuirreL – Adding an Alias

• Click "Test", then click "Connect", to verify it can connect to the RapidsDB node.

RapidsDB Unified JDBC Driver v2.5 Page 25 © Borrui Data Technology Co. Ltd 2018

• At the main screen, now the "Aliases" tab should show the entry "RapidsDB".

• Double-click on "RapidsDB" and click "Connect" at the popup screen, now it should connect to the
RapidsDB node and shows the catalog information. See Figure 5 below.

NOTES:

1. The standard version of SQuirreL does not handle systems such as RapidsDB that have
multiple catalogs each with their own schema. When displaying the metadata for RapidsDB,
the standard version of SQuirreL will correctly display all of the catalogs, but for each catalog
SQuirreL will show all of the schemas from all of the catalogs. If a schema from another
catalog is clicked on and then the TABLE icon is clicked on, nothing will be shown for the
tables in that schema. This can be confusing to the user, and for this reason, a special version
of SQuirreL has been created for RapidsDB that addresses this issue and displays the catalog
and schema information correctly. Contact your RapidsDB representative to obtain this
modified version of SQuirreL. Figure 5 below shows an example of the RapidsDB metadata
information correctly displayed using the modified version of SQuirreL.

Figure 5. Modified Squirrel Display of RapidsDB Metadata.

7.3 DBVisualizer (https://www.dbvis.com/)
The first step is to create a Driver for RapidsDB:

https://www.dbvis.com/

RapidsDB Unified JDBC Driver v2.5 Page 26 © Borrui Data Technology Co. Ltd 2018

Under the menu Tools/Driver Manager/Driver/Create Driver

• At “Name:” enter a name for the RapidsDB Unified JDBC Driver, e.g. “RapidsDB”.

• At “URL Format:” enter "jdbc:rdp://<server>:<port>"

• At “Driver File Paths”, click on User Specified, and then click on the folder icon on the right-hand
side and navigate to the folder where the RapidsDB Unified JDBC Driver.jar file can be found and
click on the jar file and then click “Open”. See Figure 6 below.

Figure 6. DBVisualizer – Adding a Driver(1)

• After clicking open the Driver Class filed in the Driver Settings should be filled in and the Ready
button should be shown (see Figure 7 below). The Driver has been added at this point and the
Driver Manager box can be closed.

RapidsDB Unified JDBC Driver v2.5 Page 27 © Borrui Data Technology Co. Ltd 2018

Figure 7. DBVisualizer – Adding a Driver (2)

The second step is to create a database connection to RapidsDB:
Under the menu Database

• Select “Create Database Connection” and select “Use Wizard” and then enter a connection
name e.g. “Rapids”, press “Next”. See Figure 8 below:

RapidsDB Unified JDBC Driver v2.5 Page 28 © Borrui Data Technology Co. Ltd 2018

Figure 8. DBVisualizer – Connection Wizard (1)

• At “Select Database Driver” dropdown, select “RapidsDB” or the name that you entered at the
creation step above, click “Next”.

• At the connection screen “Database URL”, enter “jdbc:rdp://<address>:<port>”

• Leave everything else blank, click “Finish”. See Figure 9 below.

RapidsDB Unified JDBC Driver v2.5 Page 29 © Borrui Data Technology Co. Ltd 2018

Figure 9. DBVisualizer – Connection Wizard (2)

Connect to RapidsDB

• Select the connection name created above, e.g. "RapidsDB", right-click and select "Connect".

NOTE:

1. DBVisualizer does not handle systems such as RapidsDB that have multiple catalogs each with
their own schema. When displaying the metadata for RapidsDB, DBVisualizer will correctly
display all of the catalogs, but for each catalog DBVisualizer will show all of the schemas from all
of the catalogs. If a schema from another catalog is clicked on and then the TABLE icon is clicked
on, nothing will be shown for the tables for that schema. Figure 10 below shows an example of
this problem.

RapidsDB Unified JDBC Driver v2.5 Page 30 © Borrui Data Technology Co. Ltd 2018

Figure 10. DBVisualizer Sample Screen

8. Debugging

8.1 JDBC Driver
The JDBC driver does not contain a logging framework, as this would impose a constraint on any client
that uses it. Instead, the driver uses the SLF4J logging API, which has bindings with many popular logging
frameworks. So it is up to the client application that is using the JDBC driver to provide a logging
framework that can bind to SLF4J. Failure to do so will result in some warning messages appearing on
the console about the lack of a logging framework being supplied:

And here is an example where the client application has provided a jar file for binding SLF4J to Log4J, as
well as a jar file for the implementation of Log4J. This enables all the logging that occurs within the JDBC
driver to be directed through the Log4J framework:

RapidsDB Unified JDBC Driver v2.5 Page 31 © Borrui Data Technology Co. Ltd 2018

Once a logging framework is in place, the driver can be debugged by setting the log level to TRACE or
DEBUG (where TRACE is an even more verbose level than DEBUG) for all the classes in the
com.rapidsdata.jdbcdriver namespace. How this is done will vary greatly with the logging framework
used, as well as the user's preferred way of configuring the logging framework.

As one possible example, if the user is using Log4J then the JDBC driver can be debugged by providing a
file, log4j.properties, on the application's classpath with the following contents:

Example log4j.properties file with tracing enabled for the RapidsDB Unified JDBC Driver:

By default, log INFO or higher to console
log4j.rootLogger=INFO,consoleLogger

Output ALL logging messages from the RapidsDB JDBC driver
log4j.logger.com.rapidsdata.jdbcdriver=TRACE

A logger for sending messages to the console
log4j.appender.consoleLogger=org.apache.log4j.ConsoleAppender
log4j.appender.consoleLogger.layout.ConversionPattern=%d{ISO8601} [%-22c{2}] %-5p: %m%n
log4j.appender.consoleLogger.layout=org.apache.log4j.EnhancedPatternLayout

Below is some sample debug output from the JDBC driver:

craigmcintyre@craigs-mbp:tmp$ java -cp .:rapids-jdbc-1.0.1.jar:slf4j-log4j12-1.7.19.jar:log4j-1.2.17.jar
com.rapidsdata.testrdp.JdbcSample
2016-12-30 19:37:41,900 [aj.NamedThreads] INFO : jcabi-aspects 0.22.5/4a18718 started new
daemon thread jcabi-loggable for watching of @Loggable annotated methods
2016-12-30 19:37:41,911 [jdbcdriver.Driver] TRACE: #getVersion(): entered
2016-12-30 19:37:41,917 [jdbcdriver.Driver] TRACE: #getVersion(): '1.0.1' in 1.99ms
2016-12-30 19:37:41,918 [jdbcdriver.Driver] TRACE: #connect('jdbc:rdp://localhost:4333', '{user=,
password=}'): entered
2016-12-30 19:37:41,952 [jdbcdriver.JdbcConnection] TRACE: #getServerType(): entered
2016-12-30 19:37:41,953 [jdbcdriver.JdbcConnection] TRACE: #getServerType(): 1 in 550.04µs
2016-12-30 19:37:41,970 [jdbcdriver.JdbcConnection] TRACE: #getServerType(): entered
2016-12-30 19:37:41,971 [jdbcdriver.JdbcConnection] TRACE: #getServerType(): 1 in 109.03µs
2016-12-30 19:37:42,044 [jdbcdriver.JdbcConnection] TRACE: #getServerType(): entered
2016-12-30 19:37:42,045 [jdbcdriver.JdbcConnection] TRACE: #getServerType(): 1 in 255.97µs
2016-12-30 19:37:42,045 [jdbcdriver.JdbcConnection] INFO : serverName:localhost cat:null
databaseName: user: password:
2016-12-30 19:37:42,233 [jdbcdriver.JdbcConnection] TRACE: #setFederation('DEFAULTFED'): entered
2016-12-30 19:37:42,234 [jdbcdriver.JdbcConnection] TRACE: #setFederation('DEFAULTFED'): in
493.89µs

RapidsDB Unified JDBC Driver v2.5 Page 32 © Borrui Data Technology Co. Ltd 2018

2016-12-30 19:37:42,235 [jdbcdriver.Driver] TRACE: #connect('jdbc:rdp://localhost:4333', '{user=,
password=}'): com.rapidsdata.jdbcdriver.JdbcConnection@2f686d1f in 316.73ms
2016-12-30 19:37:42,235 [jdbcdriver.JdbcConnection] TRACE: #createStatement(): entered
2016-12-30 19:37:42,236 [jdbcdriver.JdbcConnection] TRACE: #createStatement(1004, 1007): entered
2016-12-30 19:37:42,248 [jdbcdriver.JdbcConnection] TRACE: #getServerType(): entered
2016-12-30 19:37:42,249 [jdbcdriver.JdbcConnection] TRACE: #getServerType(): 1 in 137.39µs
2016-12-30 19:37:42,249 [jdbcdriver.JdbcConnection] TRACE: #getServerType(): entered
2016-12-30 19:37:42,250 [jdbcdriver.JdbcConnection] TRACE: #getServerType(): 1 in 78.14µs
2016-12-30 19:37:42,253 [jdbcdriver.JdbcConnection] TRACE: #createStatement(1004, 1007):
com.rapidsdata.jdbcdriver.JdbcStatement@3b0143d3 in 14.30ms
2016-12-30 19:37:42,253 [jdbcdriver.JdbcConnection] TRACE: #createStatement():
com.rapidsdata.jdbcdriver.JdbcStatement@3b0143d3 in 17.35ms
2016-12-30 19:37:42,254 [jdbcdriver.JdbcStatement] TRACE: #executeUpdate('INSERT INTO TABLE_A1
VALUES ('RAPIDS DB', 88888);'): entered
2016-12-30 19:37:42,254 [jdbcdriver.JdbcStatement] TRACE: #executeUpdate('INSERT INTO TABLE_A1
VALUES ('RAPIDS DB', 88888);', 2): entered
2016-12-30 19:37:42,254 [jdbcdriver.JdbcStatement] TRACE: #isClosed(): entered
2016-12-30 19:37:42,255 [jdbcdriver.JdbcStatement] TRACE: #isClosed(): false in 78.50µs

8.2 RapidsDB
At times, it may be necessary to debug the messages that are being sent and received across the wire
line protocol from the RapidsDB server. Logging can be turned on that prints the messages sent and
received by the server as well as their contents.

To enable this logging, edit the file cfg/log4j.dqx.properties on the RapidDB node that the JDBC driver
has connected to and add the following line:

log4j.logger.com.rapidsdata.wirelineprotocol=TRACE

Then restart the RapidsDB cluster. The log messages should be written to the logfile specified in the
log4j.dqx.properties file (typically dqx.log).

To disable logging, either remove the above line or change the log level on the above line from TRACE to
INFO.

Below is some sample output generated from the logging:

2017-01-25 16:48:50,664 [messaging.BaseProtocolHandler] TRACE: Session (null): Read message header
(type = 1 (ProtocolCompatibleRequest), payload length = 10 bytes) from client at /10.0.8.1:55504.
2017-01-25 16:48:50,666 [messaging.BaseProtocolHandler] TRACE: Session (null): Read and decoded
message type 1 (ProtocolCompatibleRequest) from the client at /10.0.8.1:55504.
Message fields: ProtocolCompatibleRequest(clientProtocolVersion:1, clientDescription:login)
2017-01-25 16:48:50,728 [messaging.BaseProtocolHandler] TRACE: Session (null): Sent message type 2
(ProtocolCompatibleResponse) from server to client at /10.0.8.1:55504
.

RapidsDB Unified JDBC Driver v2.5 Page 33 © Borrui Data Technology Co. Ltd 2018

 Message fields: ProtocolCompatibleResponse(protocolVersion:1, serverSoftwareVersion:3.0-POC-14-
g57bc291, serverBuildInfo:Build information:
 version 3.0-POC-14-g57bc291
 from branch (no
 by rapids
 on localhost.localdomain
 at Tue Jan 24 11:04:42 PST 2017
)
2017-01-25 16:48:51,159 [messaging.BaseProtocolHandler] TRACE: Session 1: Read message header
(type = 21 (ClearTextTunnelRequest), payload length = 1 bytes) from client at /10.0.8.1:55504.
2017-01-25 16:48:51,161 [messaging.BaseProtocolHandler] TRACE: Session 1: Read and decoded
message type 21 (ClearTextTunnelRequest) from the client at /10.0.8.1:55504.
Message fields: ClearTextTunnelRequest()
2017-01-25 16:48:51,162 [messaging.BaseProtocolHandler] TRACE: Session 1: Sent message type 22
(TunnelSupportedResponse) from server to client at /10.0.8.1:55504.
 Message fields: TunnelSupportedResponse()
2017-01-25 16:48:51,162 [messaging.ProtocolHandlerV1] DEBUG: Tunnel established for the client at
/10.0.8.1:55504
2017-01-25 16:48:51,590 [messaging.BaseProtocolHandler] TRACE: Session 1: Read message header
(type = 23 (AuthenticationRequest), payload length = 7 bytes) from client at /10.0.8.1:55504.
2017-01-25 16:48:51,592 [messaging.BaseProtocolHandler] TRACE: Session 1: Read and decoded
message type 23 (AuthenticationRequest) from the client at /10.0.8.1:55504.
Message fields: AuthenticationRequest(username:root)
2017-01-25 16:48:51,593 [messaging.BaseProtocolHandler] TRACE: Session 1: Sent message type 26
(AuthenticationOkResponse) from server to client at /10.0.8.1:55504.
 Message fields: AuthenticationOkResponse()
2017-01-25 16:48:51,593 [messaging.ProtocolHandlerV1] DEBUG: Authentication succeeded for the
client at /10.0.8.1:55504

	1. Changes From Prior Versions
	1.1 Changes from Version 2.4
	1.2 Changes from Version 2.3
	1.2 Changes from Version 2.2
	1.3 Changes from Version 2.1
	1.4 Changes from Version 2.0
	1.5 Changes from Version 1.2
	1.6 Changes from Version 1.1
	1.7 Changes from Version 1.0

	2. Introduction
	3. Architecture
	3.1 Interface to RapidsDB Cluster
	3.2 Interface to External Data Sources

	4. Configuring RapidsDB for JDBC
	5. Using the Unified JDBC Driver to Access RapidsDB
	5.1 Driver Requirements
	5.2 Basic Connection URL
	5.3 Connection URL Options
	5.3.1 Specifying the Host and Port Numbers of the RapidDB Nodes to Connect to
	5.3.2 Specifying the Default Catalog and Schema

	5.4 Specifying a Native Connection at Startup
	5.5 Prepared Statement Support
	5.6 Unsupported JDBC Features
	5.7 Java Data Types Retrievable Through the JDBC Driver
	5.8 SQL to Java Data Type Conversions Supported in the JDBC Driver
	5.9 Sample JDBC Application

	6. Using the Unified JDBC Driver to Access External Data Sources Directly
	6.1 Overview
	6.2 Opening a Connection to an External Data Source
	6.3 Usage Notes
	6.4 Example

	7. Open-source Tools
	7.1 JMeter (http://jmeter.apache.org/)
	7.2 SQuirreL (http://squirrel-sql.sourceforge.net/)
	7.3 DBVisualizer (https://www.dbvis.com/)

	8. Debugging
	8.1 JDBC Driver
	8.2 RapidsDB

