

Borrui Data

RapidsDB Wireline Protocol
Specification

Protocol Version 2

RapidsDB Wireline Protocol Specification
Protocol Version 2 Page 2 © Borrui Data Technology Co. Ltd 2017

Table of Contents
1. Introduction .. 3

2. Protocol Overview... 3

3. Supported Languages and Dependencies ... 4

4. Protocol Versioning ... 4

5. Message Flows .. 5

5.1 Introduction and Semantics .. 5

5.2 Compatibility dialog .. 6

5.3 Connection dialog ... 7

5.4 Query Execute dialog .. 10

5.5 Termination dialog .. 1

5.6 Other Dialogs .. 2

6. Messages ... 2

6.1 Nomenclature ... 2

6.2 Compiling Message Definitions ... 2

6.3 Message Header ... 3

6.4 Message Types .. 4

6.5 Thrift Files ... 5

7. Sessions ... 7

8. Limits And Constraints .. 7

9. Change History .. 8

9.1 Version 1 ... 8

9.2 Version 2 ... 8

10. Future Enhancements ... 8

10.1 Asynchronous dialogs ... 8

10.1.1 Server Shutdown Notification dialog .. 9

10.1.2 Client Disconnect Notification dialog .. 9

10.2 Sideband dialogs ... 10

10.2.1 Query Cancellation dialog ... 10

10.2.2 Query Progress dialog ... 11

10.2.3 Session Monitoring dialog ... 12

RapidsDB Wireline Protocol Specification
Protocol Version 2 Page 3 © Borrui Data Technology Co. Ltd 2017

1. Introduction
The RapidsDB Wireline Protocol is a platform-independent protocol that can be used for
programmatically accessing RapidsDB from many different programming languages. It is a
specification of the messages that flow between the client and server and sequencing of those
messages. With this information, readers could build clients and APIs to interface with RapidsDB in
almost any programming language.

This document describes this protocol.

2. Protocol Overview
The RapidsDB Wireline Protocol is a message-based protocol that uses TCP/IP sockets for transport
between clients and the server. Unlike the rapids-shell, which connects to the DQC node, wireline
protocol clients can connect to any DQC or DQE node in the cluster, since all nodes are functionally
homogeneous. The node that a client connects to is then responsible for the parsing, planning and
execution of the query, as well as collating responses from all nodes and sending them to the client.
The port number of the server that the client is connecting to is designated by the “clientPort”
key/value in the cluster.config file. This is typically set to 4333 unless it is overridden in this file.

Each TCP/IP connection to the server establishes a new session. Each session is capable of executing
only one request from a client at a time. If multiple concurrent requests need to be executed then
multiple connections must be used.

The wireline protocol follows a model of trying to keep the most common operations as simple as
possible, at the expense of additional complexity for the less common operations. This makes it
easier to implement the critical parts of the protocol, both for the client and server, and makes it
much less error-prone. As such, the primary interaction between the client and RapidsDB is a
synchronized request-response model: the client issues a request to the server and then waits for
the server to send back one or more responses. We refer to this sequence within this document as a
dialog. Occasionally a dialog between and client and server may contain a sub-dialog within it, but
dialogs still follow the request-response pattern.

The Wireline Protocol can also support asynchronous messages sent from the server to the client.
These types of messages are usually sent to inform the client of an event that is outside of any
current request being processed. An example of this would be a message sent from the server to all
clients to indicate that the server is shutting down. This is currently not implemented in the server,
but the Wireline Protocol has allowed for it.

In the future, users will be able to track the progress of requests or cancel requests that are
currently being executed. Due to the synchronous request-response model, and the desire to keep
the most common aspects of the protocol as simple as possible, sending a second request on a
session is not allowed until the first one is completed. Therefore the RapidsDB Wireline Protocol
allows for this with out-of-band queries – i.e., allowing a request on a different session to track the
progress or cancel a request on the original session, with appropriate authorization of course. This is
currently not implemented in RapidsDB, but again the Wireline Protocol has allowed for it to be
implemented in the future.

Since a request from the client can result in the server sending large amounts of data back to the
client, it is important to understand flow control in the protocol. When executing a client’s request,

RapidsDB Wireline Protocol Specification
Protocol Version 2 Page 4 © Borrui Data Technology Co. Ltd 2017

the server will try to send as much data as it has available to the client as soon as it can. The server
typically batches the results into messages containing up to 10,000 rows to maximize throughput.
The server will try to send each of these messages to the client when they are filled. If the client is
not reading the messages as fast as the server is producing them (e.g., the client is processing the
data returned) then the server will eventually get blocked from sending more data as the TCP/IP
send window closes. As the client reads more data, the TCP/IP window will open and this will allow
the server to send further messages.

Messages sent between clients and servers contain a fixed size header and a payload. The header
identifies the type of payload and the overall size of the message. The payload itself is the
serialization of a message described in an Interface Definition Language (IDL) – in this case a Thrift
file. An IDL framework was chosen for the Wireline Protocol since it alleviates protocol implementers
from writing error-prone and time consuming code to read and write messages correctly. Instead,
the Wireline Protocol defines Thrift messages based on their content and these Thrift messages get
compiled to code for the target programming language, allowing the protocol implementer to focus
on message sequencing, knowing that the message contents will be formatted correctly. Thrift is
widely available across all the popular programming languages.

3. Supported Languages and Dependencies
The RapidsDB Wireline Protocol is available as of RapidsDB version 3.0, which also supplies a JDBC
driver based upon this protocol.

Clients wishing to develop their own implementation of this protocol require:

1. Access to TCP/IP sockets.
2. The ability to compile Thrift messages into code for their target language. As of version

0.10.1, Thrift supports the following programming languages:

AS3 Cocoa C C++ C#

D Dart Delphi Erlang Go

Haxe Haskell Java Javascript Lua

Ocaml Perl PHP Python Ruby

Smalltalk Swift

4. Protocol Versioning
The RapidsDB Wireline Protocol has a provision in it for versioning the protocol itself. Different
versions of the protocol may exchange different messages, or they may exchange messages
differently. RapidsDB has been built to be able to accept clients communicating over older protocol
versions so that existing clients and their drivers may not need to be upgraded when RapidsDB is
upgraded.

When a client connects to RapidsDB over the Wireline Protocol, the first interaction that takes place
is for the client to announce what protocol version it supports. The server will then respond with a
message to indicate whether it can accept this protocol version or not. From then on all
communication will occur in a form that is specific to the requested protocol version.

RapidsDB Wireline Protocol Specification
Protocol Version 2 Page 5 © Borrui Data Technology Co. Ltd 2017

There are specific Thrift message definitions for this compatibility check. It is expected that these
messages themselves will not change, as that would imply breaking compatibility with previous
protocol versions.

This compatibility check is further described in the 5. Message Flows section below.

The current version of the Wireline Protocol is VERSION 2.

5. Message Flows
5.1 Introduction and Semantics
Dialogs represent the flow of messages between a client and a server, typically to fulfil some client
request. Most dialogs are request-response based thus they are synchronous in nature, however
some event messages from the server are sent asynchronously to convey important real time
events. That is, the server only ever receives synchronous messages on a given connection (it should
never receive another query on the same connection while it is still processing a prior query)
however the server may send messages to the client asynchronously as needed. So the client needs
to be aware that it could receive notification messages at any stage of any dialog.

Because the dialogs from the client to the server are synchronous by design, this makes things
simpler to design and implement, however it precludes operations such as inspecting the state of a
query or even cancelling a query from being asked on the same channel. Instead these operations
will need to occur on an alternate channel. This is detailed further below.

The messages involved in the dialogs are therefore named according to their synchronicity for easier
identification and understanding: request messages are named XxxxRequest, responses are
named XxxxResponse and asynchronous messages are named XxxxNotification.

Request messages are always acknowledged with a Response message. A single Request message
may cause multiple Response messages to be sent (e.g., the server sending multiple response
messages containing row data), however a Request dialog is always terminated either by an
ErrorResponse or another Response message that is similarly named to the Request. This indicates
that the Request dialog has completed successfully. This can be seen in the example below, where
the client sends a QueryExecuteRequest message to perform a SQL INSERT statement. This
QueryExecuteRequest is ultimately terminated by a QueryExecuteResponse message being
sent by the server back to the client. In this example the server sends additional responses back to
the client before terminating the dialog, such as a unique statement ID and notification that the first
statement within the batch (of which this request only has a batch of 1 SQL statement) has
completed.

RapidsDB Wireline Protocol Specification
Protocol Version 2 Page 6 © Borrui Data Technology Co. Ltd 2017

A Request dialog may also involve a subdialog. For example, the client sends a Request to the server
which then sends a Request back to the client for further information. The client would then send a
Response to the server for that inner dialog which would result in the server sending a Response
back for the client’s original (outer) Request. This is analogous to being asked a question and having
to ask a clarifying question in order to answer it.

All errors will be sent back using the ErrorResponse message, unless the error is such that the client
can work around that specific error and try again some other way. i.e., it needs to be a non-fatal
error that the client would want to explicitly catch.

The dialogs presented below use specifically named Response types for each Request message,
rather than the approach of using a generic “ok” Response message. This is so that debugging a TCP
dump or Wireshark trace is easier to follow, particularly for any dialogs involving sub-dialogs.

All dialogs described below are for the current version of the Wireline Protocol.

5.2 Compatibility dialog
The Compatibility dialog represent the first interactions that occur between the client and server
once the client connects. The interactions in this dialog involves checking to see if the client and
server can talk to each other using a compatible protocol version that they both support.

In this dialog, the client tells the server which version number of the protocol it supports. The server
returns a message indicating whether it supports that version of the protocol or not. If it does not
support a protocol version then the server will also disconnect the socket after sending the
incompatibility response message.

It is expected that this preliminary protocol compatibility interaction would remain largely
unchanged for some significant period of time. This would allow the rest of the protocol to be
updatable but still allow a client to easily determine if it is compatible with the protocol or not.

The Compatibility dialog is actually a subset of the overall Connection dialog, described next.

RapidsDB Wireline Protocol Specification
Protocol Version 2 Page 7 © Borrui Data Technology Co. Ltd 2017

5.3 Connection dialog
The Connection dialog is the overall sequence of messages when a client connects to the server,
before RapidsDB will accept any queries for execution. The Connection dialog actually includes the
Compatibility dialog, which has been documented separately for clarity.

In the Connection dialog the concepts of protocol compatibility, user authentication, and session
startup are clearly separated out.

After ensuring that both the client and server are talking a compatible protocol version (refer to the
Compatibility dialog), the client negotiates the confidentiality of the connection it wants. At this
stage RapidsDB only supports clear text tunnels (i.e., no encryption) however it is feasible in the
future that RapidsDB may support SSL tunnels or other encryption mechanisms to provide
confidentiality on the connection. The client sends the server a ClearTextTunnelRequest and
the server duly acknowledges this by replying with a TunnelSupportedResponse. If the tunnel
type was not supported then the server would respond with an ErrorResponse message and
terminate the connection.

At this point the client and server are both talking a compatible protocol version over a tunnel with
an appropriately agreed confidentiality. Now the connection then needs to be authenticated.
Currently RapidsDB does not support users or their authentication, but the protocol has been
designed to at least accommodate the fact that this may happen at a later stage. Having defined the
basis for an authentication dialog will allow for easier backwards compatibility with clients that use
an older version of the WLP. At this stage, since RapidsDB does not do any actual authentication the
connection is allowed and an AuthenticationOkResponse is sent to the client.

After authenticating the connection, the client then needs to start a session with RapidsDB. A
SessionStartRequest allows the protocol to send any initial session information (such as the
default catalog and schema) to RapidsDB and for RapidsDB to validate the parameters and apply
them when implemented. If the session parameters are validated successfully then the server will
send back a SessionChangeResponse message to the client.

RapidsDB Wireline Protocol Specification
Protocol Version 2 Page 8 © Borrui Data Technology Co. Ltd 2017

This completes the basic connection dialog. From this point the client is able to submit queries to the
server for execution.

The Connection dialog is also described from the client’s perspective as a set of states and transitions below, where transitions occur as a result of sending a message to the
server or receiving message from the server.

10

5.4 Query Execute dialog

The Query Execute dialog describes how a client interacts with RapidsDB in order to submit a query
to be executed, and how it receives results and metadata. The Wireline Protocol allows for multiple
statements to be batched in a single QueryExecuteRequest message, delimited by semicolons.
RapidsDB will return responses for each individual statement in the batch.

Clients must have successfully completed the Connection dialog in order to start a Query Execute
dialog.

The diagram that follows represents the generalised execution of SQL statement, and is henceforth
described here.

After submitting a QueryExecuteRequest, the server parses the batch of SQL statements and will
return an ErrorResponse if the batch cannot be parsed. This will end the request.

If the batch is parsed successfully then the server sends the client a QueryReceiptResponse
message. This acknowledges the statements and gives the client a unique ID and secret key for each
executable statement in the batch. This ID and key can later be used for side-band queries to track
the progress or cancel the execution of a statement.

RapidsDB will then execute each statement in the batch in series. If a statement encounters an error
during this planning or execution phase then the server will send the client an ErrorResponse
message. If the continueBatchOnError field of the original QueryExecuteRequest message
was set to false (the default) then this ErrorResponse marks the end of the entire Query Execute
dialog, and the client is free to submit more requests. However, if this continueBatchOnError
field is set to false then this error only marks the end of execution of this individual statement in the
batch, and the server then starts to execute the next statement in the batch.

If a SQL statement generates a result set (e.g., a SELECT statement), even if the result set does not
contain any rows, then the server will send the client a RowMetadataResponse message that
describes the format of any rows to follow. After that, any rows will be batched and encapsulated in
RowDataResponse messages, until all rows have been sent to the client. At that point the server
will send the client a StatementResponse message to indicate that execution of the current
statement in the batch is complete.

If a SQL statement does not generate a result set (e.g., an INSERT statement) then the server will
simply execute the request and send the client a StatementResponse message when the
execution has completed successfully.

After iterating and executing all statements in the batch, the server will finally send the client a
QueryExecuteResponse message to indicate that all statements in the original
QueryExecuteRequest message have been completed. The client is then free to execute
subsequent requests.

11

The Query Execute dialog is also described from the client’s perspective as a set of states and transitions below, where transitions occur as a result of sending a message to
the server or receiving message from the server.

As a simple, concrete example of executing a single SQL statement, consider the dialog below:

The client sends a QueryExecuteRequest message to the server containing a single, simple SQL
statement. The server then responds with a QueryReceiptResponse message to provide tracking of
this statement. It then executes the statement and sends the client a RowMetadataResponse message
followed by three RowDataResponse messages. Each RowDataResponse messages can contain many
individual rows. Finally the server sends the client a StatementResponse message to indicate that the
execution of this SELECT statement is finished, and since there are no more statements in the batch it
concludes the original QueryExecuteRequest by sending a QueryExecuteResponse message to the
client.

A concrete example of executing a batch of SQL statements in a single QueryExecuteRequest
message is shown below. In this example the client has sent a single QueryExecuteRequest message
with a string containing 3 SQL statements delimited by semicolons (a SELECT, INSERT and a SELECT).

The server acknowledges the request by sending the client a QueryReceiptResponse with a unique
ID and secret key for each of the 3 statements in the batch. The server then begins executing the first
statement. Since it is a SELECT statement the server sends a RowMetadataResponse message that
describes the data that is to come, followed by a RowDataResponse message containing the row data.
In this case, all the row data was able to fit into a single RowDataResponse message. It marks the end
of executing this first statement by sending a StatementResponse message.

The server then starts to execute the second statement in the batch – an INSERT statement. Since
there are no rows returned from this, the server simply indicates the successful completion of the
statement by sending the client a StatementResponse message.

The server then executes the third statement in the batch – another SELECT statement. This occurs in
the same way described for the first statement in the batch, except that it is a much larger data set and
it requires three RowDataResponse messages to transport all the row data from the server to the
client. A StatementResponse message indicates the end of executing this final statement in the batch.

RapidsDB 2017 Release Plan rev 9 Page 1 © Borrui Data Technology Co. Ltd 2017

Finally, with all statements in the batch completed successfully, the server sends the client a
QueryExecuteResponse message to indicate the end of the batch. The client is then able to submit
further requests to the server.

5.5 Termination dialog
The termination dialog describes the tear down of the connection between the client and server. This
occurs when the client wishes to disconnect from the server in a graceful or non-graceful manner. In any
event, a client can simple close the socket that it established to the server to disconnect. Or if it wants to
be nice it can send the server a DisconnectRequest to tell it that it is about the close the socket. The
server does not acknowledge or respond to this request.

RapidsDB 2017 Release Plan rev 9 Page 2 © Borrui Data Technology Co. Ltd 2017

5.6 Other Dialogs
Refer to section 0 (10. Future Enhancements) for additional types of dialogs that may be supported in
the future.

6. Messages
6.1 Nomenclature
As identified in section 0 (2. Protocol Overview), message names in the Wireline Protocol have a
specific nomenclature that help to identify the origin of the message, the correlation to other messages
and the synchronicity of the message. These are identified below:

Message ending with: Description:

Request Requests are typically sent from the client to the server (though also
sometimes from the server to the client) to ask the server to perform
some action. Requests are synchronous, meaning that a second
request cannot be sent on the same connection until the first request
is completed.

Response Responses are typically sent from the server back to the client in reply
to a Request message. A client may receive multiple responses to a
request, however there is typically a single Response message with a
similar name to the original Request that indicates that the Request
has now been completed. E.g., a QueryExecuteRequest is
terminated by a QueryExecuteResponse message.

Notification Notification messages are an asynchronous message that can be sent
by the server to the client at any time. They would typically be sent to
inform the client that some signification action is about to occur that
will affect the client. E.g., the server is being shut down, or the client is
about to be disconnected for a given reason.

6.2 Compiling Message Definitions
Wireline Protocol messages are defined using the Thrift Interface Definition Language. An IDL was
chosen to define messages because it alleviates developers from the tedious and error-prone work of
serializing and deserializing messages manually. Instead, developers can focus on the sequencing of
messages.

RapidsDB 2017 Release Plan rev 9 Page 3 © Borrui Data Technology Co. Ltd 2017

Thrift was chosen as the IDL because it performed better across a wide gamut of tests including
serialization/deserialization time and the size of serialized messages. It is also available across a wide
range of programming languages.

Thrift is available from https://thrift.apache.org/
The current version of Thrift used by RapidsDB as of Wireline Protocol version 2 is Thrift v0.10.1.

Once thrift is installed, it can be used to compile the Thrift message definition files into native code, for
use in a client. A sample script that can be used to compile all Thrift message definition files to Java code
is as follows:

#!/bin/bash

DIR=$(dirname "$0")
THRIFT_FILES=$(find "${DIR}" -name *.thrift | xargs)
OUTPUT_DIR="${DIR}/../../java"

for f in $THRIFT_FILES
do
 echo -n "Compiling ${f}... "
 thrift -r --out $OUTPUT_DIR --gen java $f
 echo "Done."
done

Table 1 - Sample code to compile Thrift message definitions.

6.3 Message Header
When a Thrift message is serialized it is simply an opaque binary blob. It doesn’t contain any information
about what type of message it is, or the size of the overall message. As such, we need to prepend a
header to message to include this information.

The message header is 8 bytes long. Of these 8 bytes, 4 bytes are used to represent the entire message
length (header + payload) and 1 byte is used for the message type. The remaining 3 bytes are reserved
for future use. The 8 byte length also ensures that the rest of the message is 64-bit aligned and as such
will not incur any data re-alignment penalties on CPUs that prefer data to be aligned. The 4 byte
message length will use big endian (or network byte) ordering as this is common on messaging protocols
and it is also the default integer byte ordering for Java.

M
e

s
s
a

g
e

 T
y
p

e
1

 b
y
te

R
e

s
e

rv
e

d
1

 b
y
te

R
e

s
e

rv
e

d
1

 b
y
te

R
e

s
e

rv
e

d
1

 b
y
teTotal Message Length

4 bytes
Big Endian

byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8

MSB LSB

byte 9 byte n

Message Payload
<message length - 8> bytes

Message PayloadMessage Header

https://thrift.apache.org/

RapidsDB 2017 Release Plan rev 9 Page 4 © Borrui Data Technology Co. Ltd 2017

The interpretation of the message type field will be determined by an enumeration in each
version of the Wireline Protocol. For ease of use, it will have the following properties:

· All client initiated requests and notifications will have an odd numbered message type.
· All server sent requests and notifications will have an even numbered message type.
· Any message types that can be sent by either client or server will have an even

numbered message type.
· The ProtocolCompatibleRequest message will always have a type value of 1.
· The ProtocolCompatibleRequest message will always have a type value of 2.
· The ProtocolIncompatibleRequest message will always have a type value of 4.

The odd/even numbered assigning of message type IDs is simply to help any debugging efforts
if one is looking at a network hex dump.

The message header is expected to remain unchanged across different versions of the Wireline Protocol.

Reading messages off a socket is as simple as reading the first 8 bytes (the message header), then
extract the total message length from the first 4 bytes of the header, before reading the payload
(totalMessageLength – 8 bytes). By knowing the messageType ID and the version of the Wireline
Protocol, the payload can then be deserialized.

6.4 Message Types
The messageType field from the header maps a simple 8-bit integer to a Thrift message definition. The
interpretation of this integer value depends on the version of the Wireline Protocol being used.
Different versions of the Wireline Protocol may add or remove messages (and therefore mappings), or
they may even renumber existing messages with a new messageType value.

Because the Protocol Compatibility dialog is compatible across all versions of the Wireline Protocol, the
messages involved in this dialog must also have fixed values for their messageType field. As such, the
following messages will always have these values for the messageType field, regardless of the protocol
version used:

 ProtocolCompatibleRequest always has a messageType of 1,
 ProtocolCompatibleResponse always has a messageType of 2,
 ProtocolIncompatibleResponse always has a messageType of 4.

To determine what Thrift message is mapped to a particular value of the messageType field, consult
the MessageTypes Thrift file. This contains an enumeration that holds these values. As an example, the
mappings for version 2 of the Wireline Protocol are as follows:

Message Name Type
ProtocolCompatibleRequest 1
ProtocolCompatibleResponse 2
ProtocolIncompatibleResponse 4
ErrorResponse 6
WarningResponse 8

RapidsDB 2017 Release Plan rev 9 Page 5 © Borrui Data Technology Co. Ltd 2017

ShutdownNotification 10
DisconnectNotification 12
DisconnectRequest 13
ClearTextTunnelRequest 21
TunnelSupportedResponse 22
AuthenticationRequest 23
AuthenticatePasswordRequest 24
AuthenticatePasswordResponse 25
AuthenticationOkResponse 26
SessionChangeRequest 27
SessionChangeResponse 28
QueryExecuteRequest 29
QueryReceiptResponse 30
RowMetadataResponse 32
RowDataResponse 34
StatementResponse 36
QueryExecuteResponse 38
QueryCancellationRequest 39
QueryCancellationResponse 40
QueryProgressRequest 41
QueryProgressResponse 42
SessionMonitoringRequest 43
SessionProtocolVersionResponse 44
SessionDataResponse 46
SessionDroppedMessagesResponse 48
SessionMonitoringResponse 50
ParseStatementRequest 51
ParseStatementResponse 52
StatementBindAndExecuteRequest 53
ClosePreparedStatementRequest 55
ClosePreparedStatementResponse 56

Table 2 - Mapping of messages to messageType values.

In the above example, you can also notice that messages typically sent from the client to the server have
an odd numbering, whereas messages typically sent from the server to the client have an even message
type number. This is done to aid protocol debugging with a packet capturing tool, such as Wireshark.

6.5 Thrift Files
Version 2 of the Wireline Protocol includes a number of Thrift files. Some of these are necessary for
dialogs defined above and some are not yet used by RapidsDB, but may be included in the future. The
table below shows which dialogs each message is used in.

Message Name Refer to dialog(s)
AuthenticatePasswordRequest Not yet used
AuthenticatePasswordResponse Not yet used
AuthenticationOkResponse Connection dialog
AuthenticationRequest Connection dialog
ClearTextTunnelRequest Connection dialog

RapidsDB 2017 Release Plan rev 9 Page 6 © Borrui Data Technology Co. Ltd 2017

ClosePreparedStatementRequest Not yet used
ClosePreparedStatementResponse Not yet used
DisconnectNotification Not yet used
DisconnectRequest Termination dialog
ErrorResponse Connection, Query Execution dialogs
MessageTypes Used to map message definitions to

messageType integer values.
ParseStatementRequest Not yet used
ParseStatementResponse Not yet used
ProtocolCompatibleRequest Compatibility dialog
ProtocolCompatibleResponse Compatibility dialog
ProtocolIncompatibleResponse Compatibility dialog
QueryCancellationRequest Not yet used
QueryCancellationResponse Not yet used
QueryExecuteRequest Query Execute dialog
QueryExecuteResponse Query Execute dialog
QueryProgressRequest Not yet used
QueryProgressResponse Not yet used
QueryReceiptResponse Query Execute dialog
RowDataResponse Query Execute dialog
RowMetadataResponse Query Execute dialog
SessionChangeRequest Connection dialog
SessionChangeResponse Connection dialog
SessionDataResponse Not yet used
SessionDroppedMessagesResponse Not yet used
SessionMonitoringRequest Not yet used
SessionMonitoringResponse Not yet used
SessionProtocolVersionResponse Not yet used
ShutdownNotification Not yet used
StatementBindAndExecuteRequest Not yet used
StatementResponse Query Execute dialog
TunnelSupportedResponse Connection dialog
WarningResponse Connection, Query Execution dialogs

Table 3 - Which dialogs that each message is used in.

Also, please note that some Thrift files include other Thrift files because they reuse common definitions.
Two examples of that are shown below, where the RowMetadataResponse file includes the
ColumnMetadata file because it defines the data types that the Wireline Protocol supports. Similarly,
the RowDataResponse file includes the ColumnValue file because the latter defines the structure for
various composite column types, such as timestamps and intervals. These included Thrift files will be
included by additional Thrift messages in the future.

RapidsDB 2017 Release Plan rev 9 Page 7 © Borrui Data Technology Co. Ltd 2017

Table 4 - Thrift message inclusion.

7. Sessions
The RapidsDB Wireline Protocol includes stateful session management of clients connected this way. At
present, the session holds information on the current catalog and current schema (if set), but it can later
be expanded to hold any other useful stateful information.

At the time of writing, the rapids-shell does not connect to RapidsDB via the Wireline Protocol and thus
can not make use of these session capabilities.

When a session is established, the client has the opportunity to set the default catalog and schema. This
can be done with the SessionChangeRequest message, or it can be achieved explicitly with the SET
CATALOG or SET SCHEMA commands. When a default catalog or schema is set, that catalog and/or
schema name is used to help qualify any unqualified table names.

E.g., if the default catalog was WEST and the schema SALES then a query like:

 SELECT * FROM CUSTOMERS;
would be translated to:
 SELECT * FROM WEST.SALES.CUSTOMERS;

Tables that are fully qualified are not affected by the default catalog and schema.

8. Limits And Constraints
The RapidsDB Wireline Protocol has the following limitations and constraints:

1. The maximum size of any message is (2^32) – 8 bytes = 4,294,967,280 bytes. This is because
there are 4 bytes allocated in the message header to the payload size, minus the size of the
header itself (8 bytes).
RowDataResponse messages with multiple rows that are larger than this will be split apart and
re-serialized into multiple messages until they fit. Fundamentally, this means that a single row
cannot be larger than this maximum size once it is serialized.

RowMetadataResponse.thrift ColumnMetadata.thrift

includes

RowDataResponse.thrift ColumnValue.thrift

includes

RapidsDB 2017 Release Plan rev 9 Page 8 © Borrui Data Technology Co. Ltd 2017

2. When a client sends a request to the server, the client cannot send a second request until the
server completes the first one. If the client really needs to send a concurrent request then it
should open a separate connection to the server.

9. Change History
9.1 Version 1
Version 1 was the initial version of the Wireline Protocol. Some beta versions of RapidsDB that included
this were released in February 2017.

9.2 Version 2
Version 2 was released in March 2017 in RapidsDB version 3.1. It is functionally equivalent to protocol
version 1 except that the QueryExecuteRequest message gained an extra optional field to set the
maximum number of rows to return for any one query. When this value is set to a non-negative number
then excess rows above this value are silently dropped on the server. This feature is used by the tool
SQuirreL.

10. Future Enhancements
This section seeks to outline some potential future enhancements that can occur to the Wireline
Protocol. There is no guarantee that any of the features documented here will appear in a future
version, however this information is included so that developers using the Wireline Protocol can get a
feel for these potential changes and better structure their implementation accordingly.

10.1 Asynchronous dialogs

All of the dialogs previously presented in section 0 (5. Message Flows) have synchronous messaging.
i.e., a Request from the client generates a known set of Responses from the server in a semi-defined
order. However there are a class of messages that can be sent from the server to the client at any point
in time after the client has established a socket connection and completed the Connection dialog. These
messages are asynchronous to any dialogs that may happen to be occurring on a given client’s
connection, thus the client needs to be prepared to receive them at any time.

The purpose of these asynchronous messages is to convey important out-of-band status information
about the server or cluster that is connected to, without the client having to request it first. This could
include things like:

 Notification that the server or cluster is going to be shutting down.

 Notification of forced session termination from the server.

 Notification of changes to important server or cluster parameters.

 Notification of the health or operability of the server or cluster.

This style of dialog is not currently implemented in the RapidsDB wireline protocol,
but may be included at a later date. It is included here to help implementers think
about how they will structure their implementation.

RapidsDB 2017 Release Plan rev 9 Page 9 © Borrui Data Technology Co. Ltd 2017

The client should not respond to these messages in any way. It is up to the client whether they wish to
simply ignore the message or to do something about it (if possible).

Two asynchronous messages are defined below, relating to server shutdown and forceful client
disconnection. These may or may not be implemented straight away in RapidsDB however they are
being defined now for future compatibility. It is expected that other asynchronous messages may be
defined in the future.

10.1.1 Server Shutdown Notification dialog
The server shutdown notification indicates to a client that the server is intending to gracefully shutdown
very soon. The intent here is that the server is giving notice to the clients so that they can finish any
open operations and then terminate their connections to the server gracefully.

After waiting for some period of time, if the server still has clients connected then it will forcefully
disconnect them before completing its shutdown process. This is shown below:

10.1.2 Client Disconnect Notification dialog
The DisconnectNotification is an asynchronous message sent from the server to a client to
indicate that the server is forcefully disconnecting the client for a given reason. This could be because of
a lack of resources or from some direct administrator action. After sending this message, the server
immediately disconnects its socket to the client and then cleans up the client’s session state.

RapidsDB 2017 Release Plan rev 9 Page 10 © Borrui Data Technology Co. Ltd 2017

10.2 Sideband dialogs

The semantics of the client’s interaction with the server are such that the client can only start a new
request after the previous one has been completed. However there would be use-cases whereby the
client would wish to interact with a request that is already in flight. These include the ability to cancel a
query that is currently executing, the ability to inspect the progress of an executing query or even the
ability to monitor in real time the queries and results on another connection (e.g., for logging/debugging
purposes).

The way this is done is via sideband requests, that is, a request on a new connection. This approach was
chosen because sideband requests would be relatively rare in comparison to the regular Request-
Response dialogs. Therefore the majority of communication dialogs should not be overcomplicated by
this rarely used feature. Instead, the implementation of sideband requests should incur the cost of any
additional complexities.

Whilst RapidsDB has not implemented any of the use cases defined above (cancelling an existing query,
inspecting the progress of a query or session monitoring), these are likely to come up in the future,
hence these dialogs are described now for greater future compatibility. In the future, other sorts of
sideband requests may also be defined.

10.2.1 Query Cancellation dialog
This dialog relates to being able to request the cancellation of a query that is currently executing. While
there are no guarantees that a query can be cancelled in a timely manner, this interaction could be
crucial to being able to terminate a continuous streaming query.

Because an active query would be utilising a client’s connection, and the client cannot submit another
request until the current one is finished, the query cancellation must be sent on a new connection. But
how does a Request on one connection affect the operation on another connection, and how do we
prevent a malicious user from abusing this? This is achieved by the use of a unique ID and secret key for
each QueryExecuteRequest that the client submits. This unique identifier and secret key is returned

This style of dialog is not currently implemented in the RapidsDB wireline protocol,
but may be included at a later date. It is included here to help implementers think
about how they will structure their implementation.

RapidsDB 2017 Release Plan rev 9 Page 11 © Borrui Data Technology Co. Ltd 2017

to the client in a QueryReceiptResponse message immediately after the client submits the
QueryExecuteRequest message (refer to the 5.4 Query Execute dialog). The client would need to
extract out the query identifier and secret key and hold on to it for potential future use in a query
cancellation dialog.

When the client wishes to request cancellation of the query, the client opens a new connection to the
server, completes the Connection dialog as usual and then sends a QueryCancellationRequest
message to the server with the query ID and secret query key previously returned. The server is then
able to attempt to cancel the query at its leisure.

An example of this is shown below. Since this is not yet implemented, this dialog is subject to change.

10.2.2 Query Progress dialog
Similar to the Query Cancellation dialog, the QueryProgressRequest message is sent on a sideband
connection in order to obtain some information about the progress of a long running query. RapidsDB
does not support such a functionality at this current time, however it is foreseeable that such a feature
could be asked for. Therefore the protocol should allow such a request to be made.

The QueryProgressRequest operates in the same way as the QueryCancellationRequest by
using the unique and secret identifier returned from a QueryExecuteRequest. An example of its
usage is shown below. Since this is not yet implemented, this dialog is subject to change.

RapidsDB 2017 Release Plan rev 9 Page 12 © Borrui Data Technology Co. Ltd 2017

10.2.3 Session Monitoring dialog
Session monitoring is the ability to snoop on an existing session and see all the requests and responses
that are flowing across that session. This would be useful for logging all input and output of a session
independently of that session for the purposes of offline analysis, debugging or general monitoring.

While this presents a leak of potentially privileged information, it is still protected by the same security
mechanism that is used for cancelling queries or inspecting the progress of queries. This feature is not
currently implemented in RapidsDB but is being described here to allow for user’s to factor this in to any
usage of the Wireline Protocol. This dialog is subject to significant change.

	1. Introduction
	2. Protocol Overview
	3. Supported Languages and Dependencies
	4. Protocol Versioning
	5. Message Flows
	5.1 Introduction and Semantics
	5.2 Compatibility dialog
	5.3 Connection dialog
	5.4 Query Execute dialog
	5.5 Termination dialog
	5.6 Other Dialogs

	6. Messages
	6.1 Nomenclature
	6.2 Compiling Message Definitions
	6.3 Message Header
	6.4 Message Types
	6.5 Thrift Files

	7. Sessions
	8. Limits And Constraints
	9. Change History
	9.1 Version 1
	9.2 Version 2

	10. Future Enhancements
	10.1 Asynchronous dialogs
	10.1.1 Server Shutdown Notification dialog
	10.1.2 Client Disconnect Notification dialog

	10.2 Sideband dialogs
	10.2.1 Query Cancellation dialog
	10.2.2 Query Progress dialog
	10.2.3 Session Monitoring dialog

