
RapidsDB SQL Syntax Guide Page 1 © Borrui Data Technology Co. Ltd 2022

RapidsDB

RapidsDB SQL Syntax Guide
Release 4.3.3

RapidsDB SQL Syntax Guide Page 2 © Borrui Data Technology Co. Ltd 2022

Table of Contents

1 SQL Syntax .. 9
1.1 Lexical Structure ... 9

1.1.1 Identifiers and Keywords ... 9
1.1.2 Constants ... 10

1.1.2.1 String Constants .. 10
1.1.2.2 Boolean Constants .. 10
1.1.2.3 Numeric Constants .. 10

1.1.3 Operators ... 11
1.1.4 Special Characters .. 11
1.1.5 Comments .. 12
1.1.6 Operator Precedence ... 12

1.2 Data Types and Type Specifiers .. 13
1.2.1 Data Types ... 13
1.2.2 Type Specifiers ... 14
1.2.3 Use in CAST .. 14
1.2.4 Use in Column Definitions ... 14
1.2.5 System Metadata .. 15
1.2.6 Internal Precision ... 15

1.3 Value Expressions ... 15
1.3.1 Column References ... 16
1.3.2 Operator Invocation .. 16
1.3.3 Function Call .. 16
1.3.4 Aggregate Expression .. 16
1.3.5 Type Cast ... 17
1.3.6 Decimal Expressions and Precision .. 17
1.3.7 Scalar Subquery ... 18
1.3.8 Expression Evaluation Rules .. 19

2 Queries .. 19
2.1 Overview ... 19
2.2 Table Expressions ... 20

2.2.1 The FROM Clause ... 20
2.2.1.1 Joined Tables ... 21

2.2.1.1.1 CROSS JOIN ... 21
2.2.1.1.2 INNER JOIN ... 21
2.2.1.1.3 LEFT OUTER JOIN .. 21
2.2.1.1.4 RIGHT OUTER JOIN .. 21

2.2.1.1.5 ON Clause ... 21
2.2.1.1.6 USING Clause .. 22
2.2.1.2 Table and Column Aliases .. 23
2.2.1.3 Subqueries .. 25

2.2.2 WHERE Clause .. 25
2.2.3 GROUP BY and HAVING Clause .. 26

2.3 SELECT Lists .. 27
2.3.1 SELECT List Items .. 27
2.3.2 Column Labels .. 27

2.3.3 DISTINCT ... 28
2.4 Combining Queries (UNION, INTERSECT, EXCEPT) .. 28

2.4.1 UNION .. 28
2.4.2 INTERSECT .. 29
2.4.3 EXCEPT ... 30

2.5 ORDER BY .. 31
2.6 LIMIT and OFFSET ... 32

RapidsDB SQL Syntax Guide Page 3 © Borrui Data Technology Co. Ltd 2022

2.7 WITH (Common Table Expressions) .. 32

3 Functions and Operators .. 34
3.1 Logical Operators .. 34
3.2 Comparison Operators and BETWEEN .. 34
3.3 Mathematical Operators and Functions ... 35
3.4 String Functions and Operators .. 37
3.5 Pattern Matching – LIKE ... 40
3.6 Date/Time Functions .. 41

3.6.1 EXTRACT(from timestamp) .. 41
3.6.2 CURRENT_TIMESTAMP ... 42
3.6.3 NOW() .. 42

3.6.4 Interval Arithmetic ... 43
3.6.4.1 Interval Types .. 43
3.6.4.2 YEAR-MONTH interval: .. 44
3.6.4.3 DAY-TIME interval: .. 44
3.6.4.4 Support for Interval Arithmetic: .. 45
3.6.4.5 EXTRACT(from interval) ... 46
3.6.4.6 BETWEEN Operator: .. 47

3.7 CONDITIONAL EXPRESSIONS ... 47
3.7.1 CASE ... 47
3.7.2 COALESCE ... 48
3.7.3 IF... 48
3.7.4 IFNULL .. 49
3.7.5 NULLIF .. 49

3.8 AGGREGATE FUNCTIONS .. 49
3.9 SUB-QUERY EXPRESSIONS ... 50

3.9.1 IN .. 50
3.9.2 NOT IN .. 51
3.9.3 EXISTS ... 51

3.10 Session Functions ... 52
3.10.1 CURRENT_USER ... 52
3.10.2 CURRENT_CATALOG... 52
3.10.3 CURRENT_SCHEMA .. 53

3.11 VERSION() ... 53

4 QUERY EXECUTION ... 54
4.1 RapidsDB SQL Statement Execution ... 54
4.2 Partitioned Query Plans .. 54
4.3 Non-Partitioned Query Plans .. 56
4.4 Combination of Partitioned and Non-Partitioned Plans ... 58
4.5 RapidsDB Join Algorithms ... 60

5 INSERT .. 60

6 DDL .. 62
6.1 CREATE TABLE ... 62

6.2 Creating MOXE Tables .. 67
6.2.1 Partitioned Tables .. 67
6.2.2 Reference Tables ... 69

6.3 CREATE TABLE [AS] SELECT ... 69
6.3.1 Examples .. 70
6.3.2 Semantics ... 72

RapidsDB SQL Syntax Guide Page 4 © Borrui Data Technology Co. Ltd 2022

6.3.3 Exclusions ... 74
6.3.4 Error Conditions ... 74

6.4 CREATE INDEX ... 75
6.5 DROP TABLE .. 75
6.6 TRUNCATE TABLE .. 76

7 IMPORT/EXPORT USING IMPEX CONNECTOR ... 76
7.1 Overview ... 76
7.2 IMPEX Connector Type ... 78
7.3 Creating an IMPEX Connector .. 78
7.4 IMPEX Connector Properties .. 78
7.5 CSV (Delimited) File Formatting ... 84

7.5.1 Text Handling ... 84
7.5.1.1 ESCAPE SEQUENCES .. 84
7.5.1.2 Handling of Leading and Trailing Blanks ... 85
7.5.1.3 Empty Strings .. 86

7.5.2 Dates and Timestamps .. 87
7.5.3 Booleans .. 87
7.5.4 NULL Values ... 88
7.5.5 DELIMITER='<char> | \t' .. 89
7.5.6 ENCLOSED_BY='<char> ' | "'" .. 90
7.5.7 ESCAPE_CHAR='<char>' ... 92
7.5.8 HEADER.. 92
7.5.9 CHARSET .. 93
7.5.10 TRAILING .. 93

7.6 IMPORT References .. 94
7.7 EXPORT References .. 98
7.8 Default IMPORT and EXPORT Connectors .. 100

7.8.1 Usage ... 100
7.8.2 Default Properties ... 100
7.8.3 Changing the IMPEX Properties for the “IMPORT” and “EXPORT” Connectors .. 100

7.9 IMPORT using SELECT and INSERT .. 101
7.9.1 IMPORT Table Expressions .. 101
7.9.2 IMPORT using a SELECT statement.. 102

7.9.2.1 Overview ... 102
7.9.2.2 Column Naming Using Default Column Names .. 103
7.9.2.3 Column Naming Using AS clause .. 103
7.9.2.4 Column Naming Using HEADER option ... 103
7.9.2.5 Column Data Typing Using GUESS Property ... 104
7.9.2.6 Column Data Typing Using AS clause .. 106
7.9.2.7 Column Skipping/Pruning Using AS Clause ... 107
7.9.2.8 Column Naming and Data Typing Using LIKE clause ... 107
7.9.2.9 RAW Data Format ... 108
7.9.2.10 SELECT FROM FILE .. 108
7.9.2.11 SELECT FROM FOLDER .. 112
7.9.2.12 INSERT … SELECT ... 114
7.9.2.13 CREATE AS SELECT .. 116

7.10 Bulk IMPORT ... 119
7.10.1 Bulk IMPORT Using FILES Option.. 120
7.10.2 Bulk IMPORT Using FILES Option With FILTER ... 129
7.10.3 Bulk IMPORT Using FOLDERS Option ... 132

7.11 EXPORT Using SELECT ... 136
7.11.1 EXPORT Using SELECT TO a File .. 137
7.11.2 EXPORT Using SELECT TO a Folder ... 139

RapidsDB SQL Syntax Guide Page 5 © Borrui Data Technology Co. Ltd 2022

7.12 Bulk EXPORT ... 142
7.12.1 Backing Up Files/Sub-Folders When Doing a REPLACE .. 143

7.12.1.1 Backup for FILES option .. 143
7.12.1.2 Backup for FOLDERS option .. 144

7.12.2 Bulk EXPORT Using FILES Option .. 145
7.12.3 Bulk EXPORT Using FOLDERS Option .. 149

7.13 Error Handling .. 152
7.13.1 ERROR_PATH .. 152
7.13.2 ERROR_LIMIT .. 155
7.13.3 Data Conversion Errors .. 155
7.13.4 Mismatched Number of Fields and Columns on INSERT .. 158
7.13.5 Wildcard import to multiple connectors .. 159

8 REFRESH COMMAND .. 160

9 SYSTEM METADATA TABLES ... 160
9.1 OVERVIEW .. 160
9.2 NODES Table ... 161
9.3 FEDERATIONS Table .. 162
9.4 CONNECTORS Table .. 163
9.5 CATALOGS Table ... 163
9.6 SCHEMAS Table .. 164
9.7 TABLES Table .. 165
9.8 INDEXES Table .. 165
9.9 COLUMNS Table ... 166
9.10 TABLE_PROVIDERS Table .. 168
9.11 AUTHENTICATORS Table... 169
9.12 AUTHENTICATOR_CONFIG Table .. 170
9.13 USERS Table .. 170
9.14 USER_CONFIG Table ... 170
9.15 SESSIONS Table ... 171
9.16 USERNAME_MAPS Table .. 171
9.17 PATTERN_MAPS Table .. 172
9.18 QUERIES Table .. 172

10 CANCELLING A QUERY ... 173
10.1 rapids-shell ... 173
10.2 JDBC .. 174
10.3 CANCEL QUERY command .. 174

11 PERFORMANCE TUNING ... 176
11.1 EXPLAIN .. 176
11.2 JOIN Order .. 176
11.3 Restrict Amount of Data ... 177

12 MANAGING RAPIDSDB ... 178
12.1 Command-line Interface: rapids-shell .. 178
12.2 Running the rapids-shell .. 178

12.2.1 Running the RapidsDB shell Locally .. 178
12.2.2 Running the RapidsDB shell Remotely ... 178
12.2.3 Authentication of the RapidsDB shell .. 179
12.2.4 Cancelling Queries .. 180

RapidsDB SQL Syntax Guide Page 6 © Borrui Data Technology Co. Ltd 2022

12.3 Adding Authenticators – CREATE AUTHENTICATOR .. 182
12.3.1 Overview .. 182
12.3.2 Creating a Kerberos Authenticator .. 183

12.3.2.1 Specifying the Service Principal .. 183
12.3.2.2 Specifying the Keytab file ... 185

12.4 Dropping Authenticators – DROP AUTHENTICATOR .. 186
12.5 Altering Authenticators – ALTER AUTHENTICATOR ... 187
12.6 Adding Users – CREATE USER .. 188

12.6.1 Adding Kerberos Users ... 189
12.7 Dropping Users – DROP USER .. 190
12.8 Altering Users – ALTER USER ... 191
12.9 User ID Mapping ... 192

12.9.1 Automatic User ID Mapping ... 192
12.9.2 Manually Adding a Username Mapping – ADD USERNAME MAPPING .. 192
12.9.3 Manually Removing a Username Mapping – REMOVE USERNAME MAPPING .. 193
12.9.4 Setting the Pattern Map – SET PATTERN MAP FILE .. 194
12.9.5 Clearing the Pattern Map ... 195

12.10 Adding Connectors .. 196
12.10.1 CREATE CONNECTOR Command .. 196
12.10.2 Include Clause .. 196
12.10.3 Handling of Decimal Datatypes .. 198
12.10.4 Metadata Handling... 199
12.10.5 Adding a MOXE Connector ... 199
12.10.6 Adding a MemSQL Connector .. 200
12.10.7 Adding a MySQL Connector ... 204
12.10.8 Adding an Oracle Connector .. 210
12.10.9 Adding a Postgres Connector ... 212
12.10.10 Adding a Greenplum Connector ... 216
12.10.11 Adding a Generic JDBC Connector ... 218
12.10.12 Adding a Hadoop Connector .. 222

12.10.12.1 Creating a Hadoop Connector .. 222
12.10.12.2 Setting up the Hadoop Connector for HDFS HA Configurations ... 227
12.10.12.3 Setting up HDFS Access Privileges for the Hadoop Connector (non-Kerberos) 228

12.10.12.3.1 USER Option ... 228
12.10.12.3.2 SELECT Access .. 228
12.10.12.3.3 INSERT Access .. 228
12.10.12.3.4 TRUNCATE .. 228
12.10.12.3.5 CREATE/DROP TABLE ... 228

12.10.12.4 Kerberos Authentication ... 229
12.10.12.4.1 Overview .. 229
12.10.12.4.2 Setting up for Kerberos Configuration File, krb5.conf ... 229
12.10.12.4.3 Setting up /etc/hosts File ... 229
12.10.12.4.4 Configuring the Hadoop Connector to use Kerberos ... 230
12.10.12.4.5 Example Connectors Configured to use Kerberos .. 231

12.10.12.5 Delimited File Formatting ... 231
12.10.12.5.1 Specifying Delimited Format .. 231
12.10.12.5.2 Delimited Format Options .. 231
12.10.12.5.3 Text Handling ... 232
12.10.12.5.3.1. ESCAPE Sequences ... 232
12.10.12.5.3.2. Handling of Leading and Trailing Blanks ... 235
12.10.12.5.3.3. EMPTY STRINGS .. 237
12.10.12.5.4 DATE_FORMAT (DATES and TIMESTAMPS) ... 237
12.10.12.5.5 BOOLEANS .. 238
12.10.12.5.6 NULL Handling .. 239
12.10.12.5.7 DELIMITER='<char> | \t' ... 242

RapidsDB SQL Syntax Guide Page 7 © Borrui Data Technology Co. Ltd 2022

12.10.12.5.8 ENCLOSED_BY='<char>[<char>]' | "'” .. 243
12.10.12.5.9 ESCAPE_CHAR='<char>' .. 246
12.10.12.5.10 TERMINATOR='[<char>]\n' | '[<char>]\r\n' | '[<char>]\r'] .. 247
12.10.12.5.11 IGNORE_HEADER.. 248
12.10.12.5.12 ERROR HANDLING .. 249

12.10.12.6 ORC Format ... 249
12.10.12.6.1 Specifying ORC Format ... 249
12.10.12.6.2 ORC Format Options .. 250
12.10.12.6.3 Compression .. 250

12.10.12.7 Parquet Format ... 251
12.10.12.7.1 Specifying Parquet Format ... 251
12.10.12.7.2 Parquet Format Options .. 251
12.10.12.7.3 Compression .. 251

12.10.12.8 Configuring Character Set ... 252
12.10.12.9 Hive-style Partitioning: PARTITION BY VALUE ON .. 252
12.10.12.10 Hive Metatstore Integration ... 254

12.10.12.10.1 Configuring Hive Metastore Access ... 254
12.10.12.10.1.1. Configuring Tables to be Accessed using INCLUDES .. 255
12.10.12.10.1.1.1. List of Table Names ... 255
12.10.12.10.1.1.2. Wildcarding ... 255
12.10.12.10.1.1.3. Regex .. 255
12.10.12.10.2 Supported Hive Table Types ... 256
12.10.12.10.3 Mapping of Hive Data Types .. 256
12.10.12.10.4 CREATE TABLE .. 257
12.10.12.10.4.1. Syntax ... 257
12.10.12.10.4.2. Creating Hive-managed Tables ... 258
12.10.12.10.4.3. Creating Hive EXTERNAL Tables ... 259
12.10.12.10.5 DROP TABLE ... 260
12.10.12.10.5.1. Dropping Hive-managed Tables ... 260
12.10.12.10.5.2. Dropping External Tables ... 261

12.10.12.11 Writing to HDFS .. 262
12.10.12.11.1 INSERT .. 262

12.10.12.11.1.1 FORMAT='DELIMITED' ... 262
12.10.12.11.1.2 FORMAT='ORC' .. 264
12.10.12.11.1.3 FORMAT='PARQUET' ... 264

12.10.12.11.2 TRUNCATE TABLE ... 265
12.10.13 Adding an IMPEX Connector .. 266

12.10.13.1 Creating an IMPEX Connector... 266
12.10.13.2 IMPEX Connector Properties .. 266

12.11 Refreshing Connector Metadata Information ... 271
12.11.1 REFRESH Command .. 271

12.12 Altering Connectors .. 271
12.13 Dropping Connectors .. 272
12.14 Disabling and Enabling Connectors ... 272

12.14.1 DISABLE Connector... 272
12.14.2 ENABLE Connector ... 273

13 MANAGING MOXE ... 273
13.1 CREATE TABLE ... 274

13.1.1 PARTITION [BY] ... 274
13.1.2 Reference(replicated) Tables ... 276
13.1.3 Data Types .. 276

13.1.3.1 INTEGER .. 276
13.1.3.2 DECIMAL ... 276

RapidsDB SQL Syntax Guide Page 8 © Borrui Data Technology Co. Ltd 2022

13.1.3.3 FLOAT .. 276
13.1.3.4 VARCHAR .. 276
13.1.3.5 TIMESTAMP .. 276
13.1.3.6 DATE ... 277

13.2 CREATE TABLE AS SELECT .. 277
13.3 DROP TABLE .. 278
13.4 TRUNCATE TABLE .. 278
13.5 Backing up and Restoring MOXE Tables .. 279

13.5.1 UNLOAD ... 279
13.5.1.1 UNLOAD Command .. 279
13.5.1.2 UNLOAD Directory Structure .. 281

13.5.2 RELOAD .. 281
13.6 Checking the Distribution of Data in a Table (Beta) ... 283

13.6.1 Partitioned Tables .. 283
13.6.2 Monitoring IMPORT into a Partitioned Table ... 284
13.6.3 Replicated Tables ... 286

13.7 Changing the MOXE Configuration .. 286
13.7.1 Drop Database – RESET .. 287

14 RAPIDSDB SYSTEM METADATA TABLES ... 288

15 AUDIT LOGGING .. 289
15.1 Overview ... 289
15.2 Audit Logging Commands .. 289

15.2.1 SET AUDIT ENABLED ... 289
15.2.2 SET AUDIT DISABLED .. 289
15.2.3 ADD AUDIT ON USER .. 290
15.2.4 REMOVE AUDIT ON USER ... 290

15.3 Audit Log File Format .. 291
15.4 Configuring the Audit Log .. 291

RapidsDB SQL Syntax Guide Page 9 © Borrui Data Technology Co. Ltd 2022

1 SQL Syntax
A SQL statement is a series of words describing a database operation. This section describes the SQL syntax
supported by RapidsDB.

1.1 Lexical Structure
A SQL command is composed of a sequence of tokens, terminated by a semicolon (";"). Which tokens

are valid depends on the syntax of the particular command.

A token can be a keyword, an identifier, a quoted identifier, a literal (or constant), or a special character

symbol. Additionally, comments can occur in SQL input. Comments are not tokens, they are effectively

equivalent to whitespace.

Here is an example of syntactically valid SQL command:

SELECT * FROM CUSTOMER WHERE CUSTOMER_NAME = ‘Smith’;

Refer to Appendix B for details of the SQL grammar supported by RapidsDB.

1.1.1 Identifiers and Keywords

Tokens such as SELECT or WHERE are examples of keywords, that is, words that have a fixed meaning in

the SQL language. In the example query above, the tokens CUSTOMER and CUSTOMER_NAME are

examples of identifiers. They identify names of tables, columns, or other database objects, depending

on the command they are used in. Therefore they are sometimes simply called "names". Keywords and

identifiers have the same lexical structure, meaning that one cannot know whether a token is an

identifier or a keyword without knowing the language.

SQL identifiers and keywords must begin with a letter (a-z, but also letters with diacritical marks and

non-Latin letters) or an underscore (_). Subsequent characters in an identifier or keyword can be letters,

underscores, or digits (0-9).

RapidsDB supports identifiers up to a maximum length of 32,000 characters, but underlying data

systems may reject very long identifiers in CREATE TABLE statements.

By default, SQL keywords and identifiers are converted internally to uppercase. Therefore:

SELECT * FROM CUSTOMER WHERE CUSTOMER_NAME = ‘Smith’;

can equivalently be written as:

Select * FroM customer Where Customer_name = ‘Smith’;

A convention often used is to write keywords in upper case and names in lower case, e.g.:

RapidsDB SQL Syntax Guide Page 10 © Borrui Data Technology Co. Ltd 2022

SELECT * FROM customer WHERE customer_name = ‘Smith’;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by enclosing

an arbitrary sequence of characters in back-ticks (`) or double-quotes ("). A delimited identifier is always

recognized as an identifier, never a keyword. So "select" could be used to refer to a column or table

named "select", whereas an unquoted select would be taken as a keyword and would therefore provoke

a parse error when used where a table or column name is expected. The example can be written with

quoted identifiers like this:

SELECT * FROM “CUSTOMER” WHERE “CUSTOMER_NAME” = ‘Smith’;

Quoted identifiers can contain any character, except the character with code zero. (To include a double

quote, write two double quotes.) This allows constructing table or column names that would otherwise

not be possible, such as ones containing spaces or ampersands. Quoted identifiers are case sensitive.

1.1.2 Constants

There are three kinds of implicitly-typed constants: strings, booleans and numbers. Constants can also

be specified with explicit types. These alternatives are discussed in the following subsections.

1.1.2.1 String Constants

A string constant is an arbitrary sequence of characters bounded by single quotes ('), for example 'This is

a string'. To include a single-quote character within a string constant, write two adjacent single quotes,

e.g., 'Dianne''s horse'. Note that this is not the same as a double-quote character (").

1.1.2.2 Boolean Constants

A boolean constant can either be the 4 character string true, with no enclosing quotes, or the 5

character string false, with no enclosing quotes.

e.g.

1.1.2.3 Numeric Constants

Numeric constants are accepted in these general forms:

where digits is one or more decimal digits (0 through 9). At least one digit must be before or after the

decimal point, if one is used. At least one digit must follow the exponent marker (e), if one is present.

rapids > select true=true;

[1]

true

digits

digits.[digits][e[+-]digits]

[digits].digits[e[+-]digits]

digitse[+-]digits

RapidsDB SQL Syntax Guide Page 11 © Borrui Data Technology Co. Ltd 2022

There cannot be any spaces or other characters embedded in the constant. Note that any leading plus or

minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42

3.5

4.

.001

5e2

1.925e-3

A numeric constant that contains neither a decimal point nor an exponent has the data type INTEGER. A

numeric constant containing a decimal point but no exponent has the data type DECIMAL. A numeric

constant containing an exponent has the data type FLOAT. For more information on data types, see 1.2

below.

1.1.3 Operators

The following operators are supported:

'+'

'-'

'*'

'/'

'%'

'||'

'<'

'<='

'='

'!='

'<>'

'>='

'>'

1.1.4 Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an

operator. Details on the usage can be found at the location where the respective syntax element is

described. This section only exists to advise the existence and summarize the purposes of these

characters.

Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some cases

parentheses are required as part of the fixed syntax of a particular SQL command.

Commas (,) are used in some syntactical constructs to separate the elements of a list.

RapidsDB SQL Syntax Guide Page 12 © Borrui Data Technology Co. Ltd 2022

The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command, except

within a string constant or delimited identifier.

The asterisk (*) is used in some contexts to denote all the columns of a table.

The period (.) is used in numeric constants, and to separate schema, table, and column names.

1.1.5 Comments

C-style block comments can be used where the comment begins with /* and extends to the matching

occurrence of */. These block comments cannot nest.

A comment is removed from the input stream before further syntax analysis and is effectively replaced

by whitespace.

Example:

SELECT /*Customer query */ * FROM customer /* Source table */ WHERE customer_name = ‘Smith’;

1.1.6 Operator Precedence

The table below shows the operator precedence rules:

Operator Associativity Description

. Left Table/column name separator

+ - Right Unary plus, unary minus

* / % Left Multiplication, division, modulo

+ - Left Addition, subtraction

BETWEEN IN LIKE

< > = <= >= <> Comparison operators

IS NULL, IS NOT NULL

NOT Right

AND Left

OR left

RapidsDB SQL Syntax Guide Page 13 © Borrui Data Technology Co. Ltd 2022

1.2 Data Types and Type Specifiers

1.2.1 Data Types

Because the RapidsDB execution engine is implemented in the Java language and uses the Java Virtual

Machine (JVM) for runtime support, RapidsDB data types are implemented internally as Java classes.

Every data value handled by the system is an “instance” of a Java class. The Java class implements the

behaviors and functionality for values of that class.

For simplicity and to facilitate type harmonization across different data systems, RapidsDB organizes

these underlying Java classes into abstract “SQL types” that are similar in concept to the data types used

in most SQL-based data management systems. A RapidsDB user will generally specify data types in terms

of the SQL types, leaving the choice of Java class to the Connector and the execution engine. Connectors

translate the user’s requested SQL types to equivalent types in the associated DBMS or data store.

When presenting data to the execution engine, the Connector will select a suitable Java class (unless the

user has explicitly specified a class to be used).

The RapidsDB runtime includes a library of Java classes that implement the standard behaviors and

capabilities for SQL types, including RapidsDB-SQL standard functions (see section 3) and type

conversions. The system can also be extended with other Java classes (“User Defined Types”) which

offer extended or specialized capabilities. A User Defined Type may or may not correspond to any

standard SQL type.

The table below shows the RapidsDB SQL types, along with the underlying Java class used by default in

the execution engine and most Connectors. Note, however, that a given Connector may select a

different Java class, for example to provide extended numeric precision or to handle data that doesn’t

correspond to a SQL type.

SQL Type Default internal Java class Description

INTEGER com.rapidsdata.stdlib.FastInteger 64-bit signed integer, nullable1
DECIMAL com.rapidsdata.stdlib.FastDecimal2 64-bit decimal (17 digits precision), nullable

FLOAT com.rapidsdata.stdlib.FastFloat 64-bit IEEE floating point, nullable1

DATE com.rapidsdata.stdlib.FastDate 64-bit date, range 0000-01-01 to 9999-12-31,
nullable

TIMESTAMP com.rapidsdata.stdlib.FastTimestamp 64-bit microsecond timestamp, nullable
BOOLEAN com.rapidsdata.stdlib.FastBoolean Boolean, nullable

VARCHAR com.rapidsdata.stdlib.FastString3 Up to 32k UTF-16 characters, nullable

Notes:

1. The FastInteger and FastFloat types reserve the lowest possible numeric value to represent NULL

2. Some Connectors may use java.math.BigDecimal

3. Some Connectors may use java.lang.String

RapidsDB SQL Syntax Guide Page 14 © Borrui Data Technology Co. Ltd 2022

1.2.2 Type Specifiers

A RapidsDB type specifier specifies a data type and desired precision. Type specifiers are used in the

CAST operator (see 1.2.3) and also the column definitions in CREATE TABLE statements (see 6.1) and the

USING clause of the CREATE CONNECTOR statement (see Installation and Management Guide).

The interpretation of size, precision and scale values in a RapidsDB type specifier depends on the data

type. In this release the interpretations are as follows:

Type Default interpretation of size / scale / precision

INTEGER Precision in decimal digits (if unspecified: 17)

DECIMAL Precision in decimal digits, scale in decimal digits (if unspecified: 17, 2)

FLOAT Size of mantissa in binary digits (if unspecified: 53)

VARCHAR Maximum length in characters (if unspecifed: limited by Java class)

NOTES:
1. The value for precision of a FLOAT is interpreted as the number of binary digits in the mantissa. This

is per ANSI SQL. A 53-bit mantissa corresponds to a standard 64-bit IEEE double precision floating
point value. Expressed in decimal, the precision is 22 digits.

2. The type specifier may optionally be followed by a USING clause to explicitly specify a Java class to
be used internally.

1.2.3 Use in CAST

In principle, CAST should precisely convert a value to the specified data type and precision or generate

an error if this is not possible. So, for example, CAST(myColumn AS INTEGER(3)) should produce a value

between -999 and +999 or generate an overflow exception if the value of myColumn lies outside that

range. In practice, the behavior may deviate in certain cases, depending on whether the CAST operation

is pushed down to the underlying data store (in particular, some data stores fail to generate overflow

exceptions where expected).

1.2.4 Use in Column Definitions

When used in a column definition (CREATE TABLE or CREATE CONNECTOR WITH TABLE USING), a type

specifier specifies the minimum requirement for a column. The underlying system may optionally

substitute a definition of greater size or precision. It may not, however, substitute a definition of lesser

size or precision. So, for example, INTEGER(4) specifies a column that can store values in the range -9999

to +9999 (and obeys the rules for integer math). An underlying data store may create the corresponding

physical database column as, for example, a 16-bit integer.

If a column definition specifies a capability that exceeds the maximum capability of either the RapidsDB

Execution Engine or an underlying Data Store, the definition will be rejected. For example, INTEGER(22)

will be rejected by RapidsDB because the maximum precision for integers in RapidsDB is 19 decimal

digits.

RapidsDB SQL Syntax Guide Page 15 © Borrui Data Technology Co. Ltd 2022

1.2.5 System Metadata

Column information in the COLUMNS table in the RapidsDB System Metadata (see 9.9) reflects the

type, size, precision and scale of columns as reported by the underlying system and interpreted by

RapidsDB. The information may differ from the definitions used to create the tables. The column data

types are shown as standardized RapidsDB types. Size, precision and scale may exceed the values

specified in a RapidsDB CREATE TABLE statement as noted above.

1.2.6 Internal Precision

The type specifiers affect storage, reading, writing and conversion of data values but do not control the

precision of calculations on those values during query execution. Query calculations are performed by

the RapidsDB Execution Engine (or the query engines of underlying Data Stores) with precision no less

than the following:

• For integer values, 64-bit signed integers.

• For floating point values, 64-bit double precision (Java IEEE 754).

• For character values, Java String values of up to 2GB (using UTF-16 encoding).

• For binary values, Java byte arrays of up to 2GB in size.

1.3 Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command or

in search conditions. The result of a value expression is sometimes called a scalar, to distinguish it from

the result of a table expression (which is a table). Value expressions are therefore also called scalar

expressions (or even simply expressions). The expression syntax allows the calculation of values from

primitive parts using arithmetic, logical, set, and other operations.

A value expression is one of the following:

• A constant or literal value

• A column reference

• An operator invocation

• A function call

• An aggregate expression

• A type cast

• A scalar subquery

• Another value expression in parentheses (used to group subexpressions and override

precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do

not follow any general syntax rules. These generally have the semantics of a function or operator and

are explained in the appropriate location in Chapter 1. An example is the IS NULL clause.

RapidsDB SQL Syntax Guide Page 16 © Borrui Data Technology Co. Ltd 2022

1.3.1 Column References

A column can be referenced in the form:

qualifier is the name of a table, or an alias for a table defined by means of a FROM clause. The qualifier

and separating dot can be omitted if the column name is unique across all the tables being used in the

current query.

1.3.2 Operator Invocation

There are three possible syntaxes for an operator invocation:

• expression operator expression (binary infix operator)

• operator expression (unary prefix operator)

• expression operator (unary postfix operator) where the operator token follows the syntax rules

of Section 1.1.3, or is one of the keywords AND, OR, and NOT

1.3.3 Function Call

The syntax for a function call is the name of a function followed by its argument list enclosed in

parentheses:

For example, the following computes maximum value of column C1:

max(c1)

The list of built-in functions is in Section 1.

1.3.4 Aggregate Expression

An aggregate expression represents the application of an aggregate function across the rows selected by

a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or

average of the inputs. The syntax of an aggregate expression is one of the following:

where aggregate_name is a system-defined aggregate and expression is any value expression that does

not itself contain an aggregate.

The first form of aggregate expression invokes the aggregate once for each input row. The second form

is the same as the first, since ALL is the default. The third form invokes the aggregate once for each

distinct value of the expression (or distinct set of values, for multiple expressions) found in the input

rows.

qualifier.columnname

function_name ([expression [, expression ...]])

aggregate_name (expression [, ...])

aggregate_name (ALL expression [, ...])

aggregate_name (DISTINCT expression [, ...])

RapidsDB SQL Syntax Guide Page 17 © Borrui Data Technology Co. Ltd 2022

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield

null are discarded.

For example, count(*) yields the total number of input rows; count(f1) yields the number of input rows

in which f1 is non-null, since count ignores nulls; and count(distinct f1) yields the number of distinct

non-null values of f1.

1.3.5 Type Cast

A type cast specifies a conversion from one data type to another:

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.

The cast will succeed only if a suitable type conversion operation has been defined. A cast applied to an

unadorned string literal represents the initial assignment of a type to a literal constant value, and so it

will succeed for any type (if the contents of the string literal are acceptable input syntax for the data

type).

The table below shows the supported cast operations:

 Target

Source INTEGER DECIMAL FLOAT STRING TIMESTAMP BOOLEAN BINARY NULL

INTEGER Y Y Y N N N N

DECIMAL Y Y Y Y N N N N

FLOAT Y Y Y Y N N N N

STRING Y Y Y Y Y Y N N

TIMESTAMP N N N Y Y N N N

BOOLEAN N N N Y N Y N N

BINARY N N N N N N Y N

NULL Y Y Y Y Y Y Y Y

1.3.6 Decimal Expressions and Precision

Decimal expressions are mathematical expressions with a data type DECIMAL. Decimal values occur

either because a column is defined as type DECIMAL or because a value is converted to DECIMAL using

the CAST operator.

CAST (expression AS type)

RapidsDB SQL Syntax Guide Page 18 © Borrui Data Technology Co. Ltd 2022

A decimal value has a precision, which is the total number of significant digits in the value, and a scale,

which is the number of digits to the right of the decimal point.

When the RapidsDB Query Planner analyzes a decimal expression, it assumes a "canonical" precision

and scale for each operator in the expression. The actual precision and scale depend on the Java

class(es) involved in the calculations. The canonical precision and scale rules are designed to preserve

sufficient decimal places to fully represent the possible result of the calculation. The following table

summarizes the canonical precision assumptions. p1 and s1 represent the precision and scale of the first

operand of a math operator; p2 and s2 represent the precision and scale of the second operand.

Operation Canonical Precision and Scale

+ or - Scale = max(s1, s2)

Precision = max(p1 - s1, p2 - s2) + 1 + scale

* Scale = s1 + s2

Precision = p1 + p2 + 1

/ Scale = max(4, s1 + p2 + 1)

Precision = p1 - s1 + s2 + scale

Note that in all cases, the actual maximum precision of a decimal calculation depends on the underlying

Java class. During execution of a query, if a calculation produces a result whose precision would exceed

the maximum, the scale is typically reduced to preserve the integral part of the result.

The precision and scale of a decimal result can be specified explicitly using the CAST operator (see 1.3.5).

1.3.7 Scalar Subquery

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one

column. (See Chapter 6 for information about writing queries.) The SELECT query is executed and the

single returned value is used as the expression result. It is an error to use a query that returns more than

one row or more than one column as a scalar subquery. (But if, during a particular execution, the

subquery returns no rows, there is no error; the scalar result is taken to be NULL.) The subquery can

refer to variables from the surrounding query, which will act as constants during any one evaluation of

the subquery.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max(pop) FROM cities WHERE cities.state = states.name) FROM states;

RapidsDB SQL Syntax Guide Page 19 © Borrui Data Technology Co. Ltd 2022

1.3.8 Expression Evaluation Rules

The query optimizer may significantly reorganize a query to improve performance. As a result, the order

of evaluation of query expressions is not defined. Subqueries may be executed in any order or in

parallel. Notably, the arguments of an operator or function are not necessarily evaluated left-to-right or

in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then

other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();

then somefunc() would (probably) not be called at all.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is

particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since

those clauses are extensively reprocessed as part of developing an execution plan.

A common situation is trying to avoid division by zero in a WHERE clause. Attempting to check for a zero

value first is not reliable:

SELECT ... WHERE x > 0 AND y/x > 1.5;

A better solution is to use the NULLIF function (see section 3.7.5).

Note that CASE statements are also not guaranteed to execute in order. For example, a CASE cannot

prevent evaluation of an aggregate expression contained within it, because aggregate expressions are

computed before other expressions in a SELECT list or HAVING clause are considered. For example, the

following query can cause a division-by-zero error despite seemingly having protected against it:

SELECT CASE WHEN min(employees) > 0

THEN avg(expenses / employees)

END

FROM departments;

The min() and avg() aggregates are computed concurrently over all the input rows, so if any row has

employees equal to zero, the division-by-zero error will occur before there is any opportunity to test the

result of min(). Instead, use a WHERE clause to prevent problematic input rows from reaching an

aggregate function in the first place.

2 Queries

2.1 Overview
The general syntax of the SELECT command is

RapidsDB SQL Syntax Guide Page 20 © Borrui Data Technology Co. Ltd 2022

The following sections describe the details of the select list, the table expression, and the sort

specification.

A simple kind of query has the form:

SELECT * FROM table1;

The select list specification * means all columns that the table expression happens to provide. A select

list can also select a subset of the available columns or make calculations using the columns. For

example, if table1 has columns named a, b, and c you can make the following query:

SELECT a, b + c FROM table1;

(assuming that b and c are of a numerical data type). See Section 1.3 for more details.

FROM table1 is a simple kind of table expression: it reads just one table. In general, table expressions

can be complex constructs of base tables, joins, and subqueries. But you can also omit the table

expression entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could call

a function this way:

SELECT round(123.99);

2.2 Table Expressions
A table expression computes a table. The table expression follows the FROM clause and is optionally

followed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table, a

so-called base table, but more complex expressions can be used to modify or combine base tables in

various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of

successive transformations performed on the table derived in the FROM clause. All these

transformations produce a virtual table that provides the rows that are passed to the select list to

compute the output rows of the query.

2.2.1 The FROM Clause

The FROM Clause derives a table from one or more other tables given in a comma-separated table

reference list.

SELECT select_list FROM table_expression [sort_specification]

FROM table_expression [, table_expression [, ...]]

RapidsDB SQL Syntax Guide Page 21 © Borrui Data Technology Co. Ltd 2022

A table expression can be a table name (optionally qualified by <catalog>.<schema> or <schema>), or a

derived table such as a subquery, a JOIN construct, or complex combinations of these. If more than one

table expression is listed in the FROM clause, the tables are cross-joined (that is, the Cartesian product

of their rows is formed; see below). The result of the FROM list is an intermediate virtual table that can

then be subject to transformations by the WHERE, GROUP BY, and HAVING clauses and is finally the

result of the overall table expression.

2.2.1.1 Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the

particular join type. Inner, outer, and cross-joins are available. The general syntax of a joined table is

Joins of all types can be chained together, or nested: either or both T1 and T2 can be joined tables.

Parentheses can be used around JOIN clauses to control the join order. In the absence of parentheses,

JOIN clauses associate left-to-right.

The following describes the Join Types supported:

2.2.1.1.1 CROSS JOIN

T1 CROSS JOIN T2

For every possible combination of rows from T1 and T2 (i.e., a Cartesian product), the joined table will

contain a row consisting of all columns in T1 followed by all columns in T2. If the tables have N and M

rows respectively, the joined table will have N * M rows.

2.2.1.1.2 INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join condition with

R1.

2.2.1.1.3 LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition with

any row in T2, a joined row is added with null values in columns of T2. Thus, the joined table always has

at least one row for each row in T1.

2.2.1.1.4 RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join condition with

any row in T1, a joined row is added with null values in columns of T1. This is the converse of a left join:

the result table will always have a row for each row in T2.

2.2.1.1.5 ON Clause

The ON clause is the most general kind of join condition: it takes a Boolean value expression of the same

kind as is used in a WHERE clause. A pair of rows from T1 and T2 match if the ON expression evaluates

to true.

T1 join_type T2 [join_condition]

RapidsDB SQL Syntax Guide Page 22 © Borrui Data Technology Co. Ltd 2022

2.2.1.1.6 USING Clause

The USING clause is a shorthand that allows you to take advantage of the specific situation where both

sides of the join use the same name for the joining column(s). It takes a comma-separated list of the

shared column names and forms a join condition that includes an equality comparison for each one. For

example, joining T1 and T2 with USING (a, b) produces the join condition ON T1.a = T2.a AND T1.b =

T2.b.

To put this together, assume we have tables t1, with columns num and name:

num name

1 a

2 b

3 c

and t2 with columns num and value:

num value

1 xxx

3 yyy

5 zzz

then we get the following results for the various joins:

rapids > select * from t1 inner join t2 using(num);

NUM NAME NUM VALUE

1 a

3 c

1 xxx

3 yyy

2 row(s) returned (0.08 sec)

rapids > select * from t1 inner join t2 on t1.num=t2.num;

NUM NAME NUM VALUE

1 a

3 c

1 xxx

3 yyy

2 row(s) returned (0.06 sec)

rapids > select * from t1 left join t2 on t1.num=t2.num;

NUM NAME NUM VALUE

--- ---- --- -----

RapidsDB SQL Syntax Guide Page 23 © Borrui Data Technology Co. Ltd 2022

The join condition specified with ON can also contain conditions that do not relate directly to the join.

This can prove useful for some queries but needs to be thought out carefully. For example:

Notice that placing the restriction in the WHERE clause produces a different result:

This is because a restriction placed in the ON clause is processed before the join, while a restriction

placed in the WHERE clause is processed after the join. That does not matter with inner joins, but it

matters a lot with outer joins.

2.2.1.2 Table and Column Aliases

A temporary name can be given to tables and complex table expressions to be used for references to

the derived table in the rest of the query. This is called a table alias.

To create a table alias, write

The AS keyword is optional. The alias can be any valid identifier.

1 a

3 c

2 b

1 xxx

3 yyy

NULL NULL

3 row(s) returned (0.08 sec)

rapids > select * from t1 right join t2 on t1.num=t2.num;

NUM NAME NUM VALUE

1 a

3 c

NULL NULL

1 xxx

3 yyy

5 zzz

3 row(s) returned (0.04 sec)

FROM table_expression AS alias

Or

FROM table_expression alias

RapidsDB SQL Syntax Guide Page 24 © Borrui Data Technology Co. Ltd 2022

A typical application of table aliases is to assign short identifiers to long table names to keep the join

clauses readable. For example:

SELECT * FROM some_very_long_table_name s JOIN another_fairly_long_name a ON s.id = a.num;

The alias becomes the new name of the table expression within the current query—the original name

cannot be used elsewhere in the query. Thus, this is not valid:

SELECT * FROM my_table AS m WHERE my_table.a > 5; -- wrong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table

to itself, e.g.:

SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the

alias b to the second instance of my_table, but the second statement assigns the alias to the result of

the join:

SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...

SELECT * FROM (my_table AS a CROSS JOIN my_table) AS b ...

An extended form of table aliasing gives temporary names to the columns of the table, as well as the

table itself:

FROM table_expression [AS] table_alias (column_alias1 [, column_alias2 [, ...]])

If fewer column aliases are specified than the number of columns in the table expression, the remaining

columns are not renamed and will not participate in the query. This syntax is especially useful for self-

joins or subqueries.

When an alias is applied to the output of a JOIN clause, the alias hides the original name(s) within the

JOIN. For example:

SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...

is valid SQL, but:

SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

NOTE:

The alias name cannot be a reserved word unless it is enclosed in double quotes. For example, the

following query will fail because the word “order” is a reserved word:

RapidsDB SQL Syntax Guide Page 25 © Borrui Data Technology Co. Ltd 2022

select cast(f_col1 as integer) as order from t1 where f_col2 > 480; To use a reserved word as an

identifier, enclose it in back-ticks:

select cast(f_col1 as integer) as `order` from t1 where f_col2 > 480;

2.2.1.3 Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and may optionally be assigned a

table alias name (as in Section 5.2.1.2). For example:

SELECT * FROM (SELECT * FROM table1) AS alias_name

This example is equivalent to SELECT * FROM table1 AS alias_name. More interesting cases, which

cannot be reduced to a plain join, arise when the subquery involves grouping or aggregation.

For more information see Section 7.9.

2.2.2 WHERE Clause

The syntax of the WHERE Clause is

where search_condition is any value expression (see Section 4.2) that returns a value of type boolean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked against

the search condition. If the result of the condition is true, the row is kept in the output table, otherwise

(i.e., if the result is false or null) it is discarded.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE c1 > 5

SELECT ... FROM fdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT c1 FROM t2)

SELECT ... FROM fdt WHERE c1 IN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 + 10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 + 10) AND 100

SELECT ... FROM fdt WHERE EXISTS (SELECT c1 FROM t2 WHERE c2 > fdt.c1)

fdt is the table derived in the FROM clause. Rows that do not meet the search condition of the WHERE

clause are eliminated from fdt. Notice the use of scalar subqueries as value expressions. Just like any

other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced in

the subqueries. Qualifying c1 as fdt.c1 is only necessary if c1 is also the name of a column in the derived

WHERE <search_condition>

RapidsDB SQL Syntax Guide Page 26 © Borrui Data Technology Co. Ltd 2022

input table of the subquery. But qualifying the column name adds clarity even when it is not required.

This example shows how the column naming scope of an outer query extends into its inner queries.

2.2.3 GROUP BY and HAVING Clause

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP

BY clause, and elimination of group rows using the HAVING clause.

The GROUP BY Clause is used to group together those rows in a table that have the same values in all

the columns listed. The order in which the columns are listed does not matter. The effect is to combine

each set of rows having common values into one group row that represents all rows in the group. This is

done to eliminate redundancy in the output and/or compute aggregates that apply to these groups.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING clause

can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions

(which necessarily involve an aggregate function).

Examples:

SELECT x, sum(y) FROM test1 GROUP BY x HAVING sum(y) > 3;

SELECT x, sum(y) FROM test1 GROUP BY x HAVING x < 'c';

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the

expression is only true for sales during the month of June), while the HAVING clause restricts the output

to groups with total gross sales over 5000. Note that the aggregate expressions do not necessarily need

to be the same in all parts of the query.

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit

FROM products p LEFT JOIN sales s USING (product_id)

WHERE s.date > '2015-06-01 00:00:00' AND s.date < '2015-07-01 00:00:00'

GROUP BY product_id, p.name, p.price, p.cost

HAVING sum(p.price * s.units) > 5000;

SELECT select_list

FROM ...

[WHERE ...]

GROUP BY exprList

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

RapidsDB SQL Syntax Guide Page 27 © Borrui Data Technology Co. Ltd 2022

2.3 SELECT Lists
As shown in the previous section, the table expression in the SELECT command constructs an

intermediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table

is finally passed on to processing by the select list. The select list determines which columns of the

intermediate table are include in the result.

2.3.1 SELECT List Items

The simplest kind of select list is * which emits all columns that the table expression produces.

Otherwise, a select list is a comma-separated list of value expressions. For instance, it could be a list of

column names:

SELECT a, b, c FROM ...

The columns names a, b, and c are either the actual names of the columns of tables referenced in the

FROM clause, or the aliases given to them as explained in Section 2.2.1.2. The name space available in

the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same as

in the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:

SELECT tbl1.a, tbl2.a, tbl1.b FROM ...

When working with multiple tables, it can also be useful to ask for all the columns of a particular table:

SELECT tbl1.*, tbl2.a FROM ...

(See also Section 1.2.2.)

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to the

returned table. The value expression is evaluated once for each result row, with the row's values

substituted for any column references. But the expressions in the select list do not have to reference

any columns in the table expression of the FROM clause; they can be constant arithmetic expressions,

for instance.

2.3.2 Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for use in an

ORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + c AS sum FROM ...

If no output column name is specified using AS, the system assigns a default column name. For simple

column references, this is the name of the referenced column. For complex expressions, the system will

generate a generic name.

RapidsDB SQL Syntax Guide Page 28 © Borrui Data Technology Co. Ltd 2022

2.3.3 DISTINCT

After the select list has been processed, the result table can optionally be subject to the elimination of

duplicate rows. The DISTINCT keyword is written directly after SELECT to specify this:

(Instead of DISTINCT the keyword ALL can be used to specify the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are

considered equal in this comparison.

2.4 Combining Queries (UNION, INTERSECT, EXCEPT)

2.4.1 UNION

The results of two queries can be combined using the UNION set operation. The syntax is

query1 and query2 are queries that can use any of the features discussed up to this point. Set

operations can also be nested and chained, for example

query1 UNION query2 UNION query3

which is executed as:

(query1 UNION query2) UNION query3

UNION effectively appends the result of query2 to the result of query1 (although there is no guarantee

that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows

from its result, in the same way as DISTINCT, unless UNION ALL is used.

SELECT DISTINCT select_list ...

query1 UNION [ALL] query2

RapidsDB SQL Syntax Guide Page 29 © Borrui Data Technology Co. Ltd 2022

In order to calculate the union of two queries, the two queries must be "union compatible", which

means that they return the same number of columns and the corresponding columns have compatible

data types. Also, any LIMIT or ORDER BY clause can only appear at the end of statement.

2.4.2 INTERSECT

INTERSECT returns any distinct values that are returned by both the query on the left and right sides of

the INTERSECT operator.

The syntax is

query1 INTERSECT query2

RapidsDB SQL Syntax Guide Page 30 © Borrui Data Technology Co. Ltd 2022

query1 and query2 are queries that can use any of the features discussed up to this point. Set

operations can also be nested and chained, for example

query1 INTESECT query2 INTERSECT query3

which is executed as:

(query1 INSERSECT query2) INTERSECT query3

In order to calculate the intersect of two queries, the two queries must be "intersect compatible", which

means that they return the same number of columns and the corresponding columns have compatible

data types.

2.4.3 EXCEPT

EXCEPT returns any distinct values from the query left of the EXCEPT operator. Those values return as

long the right query doesn't return those values as well.

The syntax is

query1 and query2 are queries that can use any of the features discussed up to this point. Set

operations can also be nested and chained, for example

query1 EXCEPT query2 EXCEPT query3

query1 EXCEPT query2

RapidsDB SQL Syntax Guide Page 31 © Borrui Data Technology Co. Ltd 2022

which is executed as:

(query1 EXCEPT query2) EXCEPT query3

In order to calculate the except of two queries, the two queries must be "except compatible", which

means that they return the same number of columns and the corresponding columns have compatible

data types. Also, any LIMIT or ORDER BY clause can only appear at the end of statement.

2.5 ORDER BY
After a query has produced an output table (after the select list has been processed) it can optionally be

sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in

that case will depend on the scan and join plan types, but it must not be relied on. A particular output

ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

The orderByList can be any expression that would be valid in the query's select list. An example is:

SELECT a, b FROM table1 ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal

according to the earlier values. Each expression can be followed by an optional ASC or DESC keyword to

SELECT select_list

FROM table_expression

ORDER BY orderByList [ASC | DESC]

RapidsDB SQL Syntax Guide Page 32 © Borrui Data Technology Co. Ltd 2022

set the sort direction to ascending or descending. ASC order is the default. Ascending order puts smaller

values first, where "smaller" is defined in terms of the < operator. Similarly, descending order is

determined with the > operator.

Note that the ordering options are considered independently for each sort column. For example ORDER

BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC, y DESC.

A sort_expression can also be the column label or number of an output column, as in:

SELECT a + b AS sum, c FROM table1 ORDER BY sum;

SELECT a, max(b) FROM table1 GROUP BY a ORDER BY 1;

both of which sort by the first output column.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this case it

is only permitted to sort by output column names or numbers, not by expressions.

2.6 LIMIT and OFFSET
LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the

query:

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query

itself yields less rows).

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as omitting

the OFFSET clause. If both OFFSET and LIMIT appear, then OFFSET rows are skipped before starting to

count the LIMIT rows that are returned.

When using LIMIT or OFFSET, it is important to use an ORDER BY clause that constrains the result rows

into a unique order. Otherwise you will get an unpredictable subset of the query's rows. You might be

asking for the tenth through twentieth rows, but tenth through twentieth in what ordering? The

ordering is unknown, unless you specified ORDER BY.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large

OFFSET might be inefficient.

2.7 WITH (Common Table Expressions)
WITH provides a way to write auxiliary statements for use in a larger query. These statements are often

referred to as Common Table Expressions or CTEs.

SELECT select_list

FROM table_expression

[ORDER BY ...]

[LIMIT { number }] [OFFSET number]

RapidsDB SQL Syntax Guide Page 33 © Borrui Data Technology Co. Ltd 2022

Key characteristics of CTEs:

• RapidsDB supports only non-recursive CTEs.

• The column_list is optional, and when specified, the columns of CTE will be known by the names

specified and the column names or aliases of the underlying query are not visible when referring

to the CTE. In the example below, the column names in the CTE are x, y and z whereas the

column names in the underlying query are a,b and c. (Note that the original names are still used

normally within the underlying query itself, e.g. in the WHERE clause in the example below):

WITH cte_1(x, y, z) AS (SELECT a, b, c FROM t WHERE a < 5) SELECT x FROM cte_1;

• When the CTE is referenced in a SELECT statement, the CTE will be merged into the query and

executed as part of the query. If there are multiple references to the same CTE, each reference

to the CTE will be executed. In a future release, references to the CTE will be optimized to avoid

unnecessary computation.

• If a CTE defined in the WITH clause is not referenced in the SELECT statement, it has no effect on

the execution of the query.

Example:

RapidsDB SQL Syntax Guide Page 34 © Borrui Data Technology Co. Ltd 2022

3 Functions and Operators

3.1 Logical Operators
The usual logical operators are available:

AND

OR

NOT

SQL uses a three-valued logic system with true, false, and null, which represents "unknown". Observe

the following truth tables:

a b a AND b a OR b

TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL

a NOT a

TRUE FALSE
FALSE TRUE
NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operand without

affecting the result.

3.2 Comparison Operators and BETWEEN
The usual comparison operators are available:

Operator Description

< less than

> greater than

<= less than or equal to

>= greater than or equal to

= equal

RapidsDB SQL Syntax Guide Page 35 © Borrui Data Technology Co. Ltd 2022

<> or != not equal

Comparison operators are available for all relevant data types. All comparison operators are binary

operators that return values of type Boolean.

In addition to the comparison operators, the special BETWEEN construct is available:

a BETWEEN x AND y

is equivalent to

a >= x AND a <= y

Notice that BETWEEN treats the endpoint values as included in the range. NOT BETWEEN does the

opposite comparison:

a NOT BETWEEN x AND y

is equivalent to

a < x OR a > y

To check whether a value is or is not null, use the constructs:

expression IS NULL

expression IS NOT NULL

Do not write expression = NULL because NULL is not "equal to" NULL. (The null value represents an

unknown value, and it is not known whether two unknown values are equal.) This behavior conforms to

the SQL standard.

3.3 Mathematical Operators and Functions
Mathematical Operators

Operator Description Example Result

+ addition 2 + 3 5

- subtraction 2 - 3 -1

* multiplication 2 * 3 6

/ division (integer

division truncates the

result)

4 / 2 2

RapidsDB SQL Syntax Guide Page 36 © Borrui Data Technology Co. Ltd 2022

% modulo (remainder) 5 % 4 1

Mathematical Functions

Function Return

Type

Description Example Result

abs(x) (same as

input)

absolute value abs(-17.4) 17.4

ceil(numeric) integer smallest integer

not less than

argument

ceil(-42.8) -42

ceiling(numeric) integer smallest integer

not less than

argument (alias

for ceil)

ceiling(-95.3) -95

floor(numeric) integer largest integer

not greater than

argument

floor(-42.8) -43

mod(numeric, numeric) float returns the

remainder of

the first

argument

divided by the

second

argument

mod(1.25, 0.5) 0.25

power(numeric, numeric) float raise first

argument to the

power of the

second

argument

power(9, 2) 81.0

round(numeric) integer round to

nearest integer

round(123.99) 123

RapidsDB SQL Syntax Guide Page 37 © Borrui Data Technology Co. Ltd 2022

round(numeric, int) float round to int

number of

decimal places

round((123.999,2) 123.99

sqrt(numeric) float square root of

argument

sqrt(10) 3.1622776985168457

stddev(expression) float historical alias

for

stddev_samp

stddev_pop(expression) float population

standard

deviation of the

input values

stddev_samp(expression) float sample standard

deviation of the

input values

variance(expression) float historical alias

for var_samp

var_pop(expression) float population

variance of the

input values

(square of the

population

standard

deviation)

var_samp(expression) float sample variance

of the input

values (square

of the sample

standard

deviation)

3.4 String Functions and Operators

RapidsDB SQL Syntax Guide Page 38 © Borrui Data Technology Co. Ltd 2022

Function Return

Type

Description Example Result

concat(string, string) text String

concatentation

'Post' || 'greSQL' 'PostgreSQL'

concat(string, numeric)

concat (numeric,string)

text String

concatentation

concat('Value: ', 3.1)

concat(3.1, ' times')

'Value: 3.1'

'3.1 times'

string || string text String

concatenation

'Post' || 'greSQL' 'PostgreSQL'

string || numeric text String

concatenation

'Value: ' || 3.1 'Value: 3.1'

string + string text String

concatenation

'Post' + 'greSQL' 'PostgreSQL'

string + numeric text String

concatenation

'Value: ' + 3.1 'Value: 3.1'

char_length(string) int Number of

characters in

string

char_length('jose') 4

lower(string) text Convert string

to lower case

lower('TOM') 'tom'

position(substring in

string)

int Location of

specified

substring

position('om' in

'Thomas')

3

repeat(string, int) text Repeat the

specified string

for the

specified

number of

times.

repeat('Post',2) 'PostPost'

substring(string from int

[for int])

text Extract

substring

starting at the

“from”

position, for

substring('Thomas'

from 2 for 3)

'hom'

RapidsDB SQL Syntax Guide Page 39 © Borrui Data Technology Co. Ltd 2022

 the length

specified by the

“for” (defaults

to rest of

string)

substring(‘Thomas’

from 2)

'homas'

substring(string from

negative int [for int])

text Extract

substring

starting at the

“from” position

counting

backwards

from the right

of the string for

the length

specified by the

“for” (defaults

to rest of

string)

Substring(‘Thomas’

from -3 for 3)

'mas'

trim([leading | trailing |

both] [character] from

string)

text Remove the

longest string

containing only

the specified

character (a

space by

default) from

the

start/end/both

ends of the

string

trim(both 'x' from

'xTomxx')

'Tom'

ltrim(string [,character]) text Remove the

longest string

containing only

the specified

character (a

space by

default) from

the start of the

string

ltrim(‘ Tom’)

ltrim(‘aaTom’,’a’)

'Tom'

'Tom'

RapidsDB SQL Syntax Guide Page 40 © Borrui Data Technology Co. Ltd 2022

rtrim(string [,character]) text Remove the

longest string

containing only

the specified

character (a

space by

default) from

the end of the

string

rtrim(‘Tom ’)

rtrim(‘Tomaa’,’a’)

'Tom'

'Tom'

upper(string) text Convert string

to upper case

upper('tom') 'TOM'

left(str text, n int) text Return first n

characters in

the string.

When n is

negative an

empty string

will be

returned.

left('Tomas',2) 'To'

right(str text, n int) text Return last n

characters in

the string.

When n is

negative an

empty string

will be

returned.

right('Tomas',2) 'as'

3.5 Pattern Matching – LIKE

The LIKE expression returns true if the string-expression matches the supplied pattern. (As expected, the

NOT LIKE expression returns false if LIKE returns true, and vice versa.)

If pattern does not contain percent signs or underscores, then the pattern only represents the string

itself; in that case LIKE acts like the equals operator. An underscore (_) in pattern stands for (matches)

any single character; a percent sign (%) matches any sequence of zero or more characters.

Some examples:

{string-expression} LIKE '{pattern}' [ESCAPE ‘escape-character’]

RapidsDB SQL Syntax Guide Page 41 © Borrui Data Technology Co. Ltd 2022

'abc' LIKE 'abc' true

'abc' LIKE 'a%' true

'abc' LIKE '_b_' true

'abc' LIKE 'c' false

LIKE pattern matching always covers the entire string. Therefore, if it's desired to match a sequence

anywhere within a string, the pattern must start and end with a percent sign.

To match a literal underscore or percent sign the user must specify an escape character to be used as

part of the pattern string by adding the ESCAPE clause after the pattern string. The respective character

in the pattern must be preceded then by the escape character.

Some examples:

'a_b' LIKE 'a_%' ESCAPE ‘\’ true

'abc' LIKE 'a_%' ESCAPE ‘\’ false

3.6 Date/Time Functions

3.6.1 EXTRACT(from timestamp)

The EXTRACT() function returns the value of the selected portion of a timestamp. The table below lists

the supported keywords, the datatype of the value returned by the function, and a description of its

contents.

Keyword Datatype Description

YEAR INTEGER The year as a numeric value.

QUARTER INTEGER The quarter of the year as a single numeric value between 1 and 4.

MONTH INTEGER The month of the year as a numeric value between 1 and 12.

DAY INTEGER The day of the month as a numeric value between 1 and 31.

WEEK INTEGER The week of the year as a numeric value between 1 and 52.

HOUR INTEGER The hour of the day as a numeric value between 0 and 23.

EXTRACT(selection-keyword FROM timestamp-expression)

RapidsDB SQL Syntax Guide Page 42 © Borrui Data Technology Co. Ltd 2022

Keyword Datatype Description

MINUTE INTEGER The minute of the hour as a numeric value between 0 and 59.

SECOND

INTEGER
The whole part of the number of seconds within the minute as a value between

0 and 59.

3.6.2 CURRENT_TIMESTAMP

Returns the current date and time as a timestamp

3.6.3 NOW()

Returns the current date and time as a timestamp. Equivalent to CURRENT_TIMESTAMP.

rapids > select * from t3;

C1

--

2021-08-19 09:01:02.12

1 row(s) returned (0.06 sec)

rapids > select extract(second from c1) from t3;

[1]

2

1 row(s) returned (0.02 sec)

CURRENT_TIMESTAMP

NOW()

RapidsDB SQL Syntax Guide Page 43 © Borrui Data Technology Co. Ltd 2022

3.6.4 Interval Arithmetic

3.6.4.1 Interval Types

RapidsDB provides support for INTERVAL arithmetic as defined by the SQL-99 standard. There are two
types of intervals:

Examples:

• INTERVAL '1' YEAR
• INTERVAL '2' MONTH

• INTERVAL '1-2' YEAR TO MONTH

Examples:

• INTERVAL '5' DAY
• INTERVAL '5 10:10' DAY TO MINUTE

• INTERVAL '1 2:10:10.234' DAY TO SECOND
and so on...

Precision:
The user can specify a leading precision for any of the intervals. The default precision for all of DAY,
HOUR, MINUTE, SECOND, YEAR, MONTH is 2. The maximum precision allowed is 9. The default
fractional second precision is 6, and the maximum is 9. You can specify precision for the leading field
and also for the SECOND field, the remaining fields will follow the default precision.

The following are valid intervals:

• INTERVAL '1-2' YEAR TO MONTH

• INTERVAL '13-2' YEAR TO MONTH

• INTERVAL '199-2' YEAR(3) TO MONTH
• INTERVAL '199' MONTH(3) ------- NOTE: we have to specify the precision of three because the

value 199 is greater than the default precision

• INTERVAL '1 10:10:10.234' DAY TO SECOND
• INTERVAL '123 10:10:10.234' DAY(3) TO SECOND------- NOTE: we have to specify the precision of

three because the value 123 is greater than the default precision

• INTERVAL '123 10:10:10.12345678' DAY(3) TO SECOND(8) -------NOTE: we have to specify the
precision of three because the value 123 for the DAY is greater than the default precision, and
the precision for SECOND is also greater than the default

• INTERVAL '123 10:10:10.12345678' DAY(3) TO SECOND : the fractional second will round off to
the default 6 digits precision, and you will get back: +123 10:10:10.123457 NOTE: we have to

YEAR-MONTH INTERVAL

DAY_TIME INTERVAL

RapidsDB SQL Syntax Guide Page 44 © Borrui Data Technology Co. Ltd 2022

specify the precision of three because the value 123 for the DAY is greater than the default
precision

Range:
Can be negative or positive.

3.6.4.2 YEAR-MONTH interval:

Can be negative or positive:

year - constrained by precision. Hence with a precision of 9 the maximum value can be 999999999
month - 0 to 11 (But if leading then constrained by precision).

The following example is valid:
INTERVAL '10-10' YEAR TO MONTH.

but the following is invalid:
INTERVAL '10-13' YEAR TO MONTH.

The following is also valid:
INTERVAL '13' MONTH
This is valid because MONTH is the leading number, and so it is constrained by precision, and the leading
default precision is 2. So you can have a max value of 99 in month. But if you specify precision of more
than 2 it can be higher.

For example, you can have:

INTERVAL '999' MONTH(3)

3.6.4.3 DAY-TIME interval:

Can be negative or positive:

day - constrained by precision. Hence with a precision of 9, the maximum value can be 999999999
hour - 0 to 23

minute - 0 to 59
second - 0 to 59.999999999

Note that if hour, minute or second are leading then we can specify a precision other than the default
for them.

e.g INTERVAL '999' HOUR(3)

Also note that we can give a fractional second precision:
e.g INTERVAL '10:20.30.888' HOUR TO SECOND(3).

We can also have:
INTERVAL '10.89' SECOND(2,2)

Also note that with the fractional second, if the number does not fit the precision, it will get rounded.

RapidsDB SQL Syntax Guide Page 45 © Borrui Data Technology Co. Ltd 2022

e.g INTERVAL '10.23456' SECOND(2,4)
will become '+10.2346'

Support for interval comparisons:
We can compare DATE-TIME intervals with DATE-TIME intervals.
We can compare YEAR-MONTH intervals with YEAR-MONTH intervals.

3.6.4.4 Support for Interval Arithmetic:

Operand Operator Operand Result Type

Timestamp - Timestamp Interval

Timestamp + Interval Timestamp

Timestamp - Interval Timestamp

Interval + Timestamp Timestamp

Interval + Interval Interval

Interval - Interval Interval

Interval * Numeric Interval

Numeric * Interval Interval

Interval / Numeric Interval

Notes:

1. When you do arithmetic on intervals, the resulting interval has a precision of the maximum

allowed (see examples below).

2. When doing interval arithmetic with a timestamp literal, the timestamp literal must be specified

using the timestamp keyword (see examples below)

Examples:

In the following examples, the table t1 has column c2 defined as a timestamp column:

rapids > create table moxe.t1(c1 integer,c2 timestamp);

0 row(s) returned (0.10 sec)

rapids > insert into t1 values(1,'2018-11-12 10:12:13'),(2,'2019-12-08

09:11:30'),(3,'2017-01-01 06:12:50');

0 row(s) returned (0.09 sec)

rapids > select c2-interval '100' HOUR(3) from t1;

RapidsDB SQL Syntax Guide Page 46 © Borrui Data Technology Co. Ltd 2022

3.6.4.5 EXTRACT(from interval)

The EXTRACT() function returns the value of the selected portion of a timestamp. The table below lists

the supported keywords, the datatype of the value returned by the function, and a description of its

contents.

Keyword From Interval Datatype Description

YEAR Year-month INTEGER The year as a numeric value.

QUARTER Year-month INTEGER The quarter as a numeric value.

MONTH Year-month INTEGER The month as a numeric value

DAY Day-time INTEGER The day as a numeric value

HOUR Day-time INTEGER The hour as a numeric value.

[1]

2018-11-08 06:12:13.0

2019-12-04 05:11:30.0

2016-12-28 02:12:50.0

3 row(s) returned (0.05 sec)

rapids > select c2-'2018-01-01' from t1;

[1]

315

706

365

3 row(s) returned (0.05 sec)

rapids > select timestamp '2018-01-01 01:01:01' -interval '100'

HOUR(3) from t1 limit 1;

[1]

2017-12-27 21:01:01.0

1 row(s) returned (0.05 sec)

EXTRACT(selection-keyword FROM interval-expression)

RapidsDB SQL Syntax Guide Page 47 © Borrui Data Technology Co. Ltd 2022

Keyword From Interval Datatype Description

MINUTE Day-time INTEGER The minute as a numeric value.

SECOND Day-time INTEGER The second as a numeric value.

3.6.4.6 BETWEEN Operator:

The BETWEEN operator can return the value between two day-time or two year-month intervals. For
example:
SELECT …. WHERE TS_INTERVAL BETWEEN INTERVAL '100 10:00:00.000 DAY TO SECOND AND INTERVAL
'299 10:00:00.000' DAY TO SECOND …

3.7 CONDITIONAL EXPRESSIONS

3.7.1 CASE

The CASE expression is a generic conditional expression, similar to if/else statements in other

programming languages:

BETWEEN interval1 AND interval2

CASE WHEN condition THEN result

RapidsDB SQL Syntax Guide Page 48 © Borrui Data Technology Co. Ltd 2022

CASE clauses can be used wherever an expression is valid. Each condition is an expression that returns a

boolean result. If the condition's result is true, the value of the CASE expression is the result that follows

the condition, and the remainder of the CASE expression is not processed. If the condition's result is not

true, any subsequent WHEN clauses are examined in the same manner. If no WHEN condition yields

true, the value of the CASE expression is the result of the ELSE clause. If the ELSE clause is omitted and

no condition is true, the result is null.

An example:

3.7.2 COALESCE

The COALESCE function returns the first of its arguments that is not null. Null is returned only if all

arguments are null. It is often used to substitute a default value for null values when data is retrieved for

display, for example:

SELECT COALESCE(description, short_description, '(none)') ...

This returns description if it is not null, otherwise short_description if it is not null, otherwise the text

‘(none)’.

3.7.3 IF

[WHEN ...]

[ELSE result]

END

COALESCE(value [, ...])

IF(boolean_expression, true_result_expression, false_result_expression)

RapidsDB SQL Syntax Guide Page 49 © Borrui Data Technology Co. Ltd 2022

IF evaluates the boolean_expression, and then evaluates one of the other two expressions to produce a

result. If the boolean_expression is true, then the true_result_expression is evaluated and returned as

the result; otherwise the false_result_expression is evaluated and returned as the result.

true_result_expression and false_result_expression may be of any type but the two must match or be

implicitly convertible to a common type.

Example:

SELECT IF(1<2, 2, 3) …

This returns the value 3.

3.7.4 IFNULL

The IFNULL function returns value2 if value1 is null; otherwise it returns value1, for example.

SELECT IFNULL(description, ‘(none)’) …

This returns the string ‘(none)’ if the value for the description column is null, otherwise it returns the

value for the column .

3.7.5 NULLIF

The NULLIF function returns a null value if value1 equals value2; otherwise it returns value1, for

example.

SELECT NULLIF(description, ‘(none)’) …

This returns a null value if the value for the description column equals ‘(none)’ otherwise it returns the

value for the description column.

3.8 AGGREGATE FUNCTIONS
Aggregate functions compute a single result from a set of input values.

Function Argument Type(s) Return Type Description

avg(expression) integer, decimal or

float

double precision for a

floating-point

argument, otherwise

same as the argument

data type

the average (arithmetic

mean) of all input

values

count(*) integer number of input rows

IFNULL(value1, value2)

NULLIF(value1, value2)

RapidsDB SQL Syntax Guide Page 50 © Borrui Data Technology Co. Ltd 2022

count(expression) any integer number of input rows

for which the value of

expression is not null

max(expression) any numeric, string, or

date/time types

same as argument type maximum value of

expression across all

input values

min(expression) any numeric, string, or

date/time types

same as argument type minimum value of

expression across all

input values

sum(expression) Integer, decimal or

float types

same as the argument

data type

sum of expression

across all input values

It should be noted that except for count, these functions return a null value when no rows are selected.

In particular, sum of no rows returns null, not zero as one might expect. The COALESCE function can be

used to substitute zero or an empty array for null when necessary.

3.9 SUB-QUERY EXPRESSIONS

3.9.1 IN

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand

expression is evaluated and compared to each row of the subquery result. The result of IN is "true" if

any equal subquery row is found. The result is "false" if no equal row is found (including the case where

the subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least

one right-hand row yields null, the result of the IN construct will be null, not false.

expression IN (subquery)

RapidsDB SQL Syntax Guide Page 51 © Borrui Data Technology Co. Ltd 2022

3.9.2 NOT IN

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand

expression is evaluated and compared to each row of the subquery result. The result of NOT IN is "true"

if only unequal subquery rows are found (including the case where the subquery returns no rows). The

result is "false" if any equal row is found.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least

one right-hand row yields null, the result of the NOT IN construct will be null, not true.

3.9.3 EXISTS

The argument of EXISTS is an arbitrary SELECT statement, or subquery. The subquery is evaluated to

determine whether it returns any rows. If it returns at least one row, the result of EXISTS is "true"; if the

subquery returns no rows, the result of EXISTS is "false".

expression NOT IN (subquery)

EXISTS (subquery)

RapidsDB SQL Syntax Guide Page 52 © Borrui Data Technology Co. Ltd 2022

3.10 Session Functions

3.10.1 CURRENT_USER

The CURRENT_USER keyword can be used in a SELECT list to return the username of the current session.

3.10.2 CURRENT_CATALOG

The CURRENT_CATALOG keyword can be used in a SELECT list to return the name of the catalog that will

be used for resolving table or object names that are not fully qualified. If a default catalog has not been

set then this keyword will return NULL.

rapids > select current_user from rapids.system.tables limit 1;

[1]

RAPIDS

1 row(s) returned (0.05 sec)

rapids > set catalog moxe;

rapids > select current_catalog from rapids.system.tables limit 1;

[1]

MOXE

1 row(s) returned (0.05 sec)

RapidsDB SQL Syntax Guide Page 53 © Borrui Data Technology Co. Ltd 2022

3.10.3 CURRENT_SCHEMA

The CURRENT_SCHEMA keyword can be used in a SELECT list to return the name of the schema that will

be used for resolving table or object names that are not fully qualified. If a default schema has not been

set then this keyword will return NULL.

3.11 VERSION()
The VERSION function returns version information about the RapidsDB software. There are three

supported variations of the VERSION function:

1. VERSION() – returns version number and build date for the RapidsDB Software, the version of

Linux and the Java version:

2. VERSION(1) – returns the version number for the RapidsD software:

3. VERSION(2) – returns the internal software repository commit id for the RapidsDB software:

rapids > select version();

[1]

RapidsDB 4.3.1 2022-01-20, Linux 5.4.0-74-generic, Java 1.8.0_292 (openj9-0.26.0)

1 row(s) returned (0.08 sec)

rapids > set schema moxe;

rapids > select current_schema from rapids.system.tables limit 1;

[1]

MOXE

1 row(s) returned (0.02 sec)

rapids > select version(1);

[1]

4.3.1

1 row(s) returned (0.02 sec)

rapids > select version(2);

[1]

bbc91e81a65297e3b945484d3b669087cf11ef77

1 row(s) returned (0.06 sec)

RapidsDB SQL Syntax Guide Page 54 © Borrui Data Technology Co. Ltd 2022

4 QUERY EXECUTION

4.1 RapidsDB SQL Statement Execution
RapidsDB will parse a SQL statement and build a query execution plan to execute the SQL statement.

When optimizing the execution plan the RapidsDB Optimizer attempts to “push down” as much of the

query logic as possible to the underlying Data Store using a minimum number of operations. Those

parts of the query logic that cannot be pushed down will be executed by the RapidsDB Execution Engine.

For example, when executing a JOIN that includes tables from two different Connectors, the join will

take place in the RapidsDB Execution Engine. EXPLAIN (see 11.1) can be used to see which parts of the

query will be executed in RapidsDB and to inspect the SQL statements that will be sent to the underlying

Data Store.

For those parts of a query that are executed by the RapidsDB Execution Engine, there are two types of

query plans which can be generated:

1. Partitioned Query Plans (see 4.2)

2. Non-Partitioned Query Plans (see 4.3)

NOTE: It is important to understand that Partitioned and Non-Partitioned Query Plans only apply to

those parts of the query plan that cannot be pushed down to the underlying data stores, where the

RapidsDB Execution Engine will be executing that part of the query plan. For queries that can be

pushed down to the underlying data store, it is the responsibility of the underlying data store to

parallelize the query execution where possible.

4.2 Partitioned Query Plans
MOXE and the Hadoop Connector support partitioning of the data across nodes in the RapidsDB cluster,

which allows a query to be executed in parallel against each of the partitions of the tables being queried.

For MOXE and the Hadoop Connector, RapidsDB will generate a Partitioned Query Plan, where portions

of the query plan will be executed in the RapidsDB Execution Engine in parallel against each partition of

a table. Figure 1 below illustrates this:

RapidsDB SQL Syntax Guide Page 55 © Borrui Data Technology Co. Ltd 2022

RapidsDB SQL Syntax Guide Page 56 © Borrui Data Technology Co. Ltd 2022

Figure 1. Partitioned Query Plan

In this example there is a join between the Supplier and Nation tables. The Supplier table is a

partitioned table that is distributed across two nodes, and the Nation table is a replicated table with a

copy of the table on each node. Each node will perform a parallel join between the partitions of the

Supplier table and the Nation table, and then the results will be merged on the originating node for the

query, which is Node1 in this example.

4.3 Non-Partitioned Query Plans
For other data stores where a single query cannot be split up and executed in parallel, RapidsDB will

generate a Non-Partitioned Query plan, sending a single query to the underlying data store. It will be

responsibility of the underlying data store to parallelize the execution of the query if possible. MemSQL

is an example of a Data Store where the query cannot be split up by RapidsDB and executed in parallel,

but MemSQL can the parallelize the execution of a SQL statement when it is pushed down to MemSQL.

Figure 2 below illustrates this:

Example: select l_orderkey, l_partkey, p_mfgr from part join lineitem on p_partkey = l_partkey and

p_mfgr = 'LG';

RapidsDB SQL Syntax Guide Page 57 © Borrui Data Technology Co. Ltd 2022

Figure 2. Non-partitioned Query Plan

Figure 2 shows the entire query getting pushed down to MemSQL (via the memSQL Aggregator) and

then MemSQL parallelizing the execution across all of the MemSQL Leaf nodes in the MemSQL cluster.

Other data stores, such as Oracle, which are not distributed data stores, will execute the query on a

single node. Figure 3 below shows the same query executed against Oracle:

RapidsDB SQL Syntax Guide Page 58 © Borrui Data Technology Co. Ltd 2022

Figure 3 Non-partitioned query plan

4.4 Combination of Partitioned and Non-Partitioned Plans
When joining tables across Connectors where one Connector uses Partitioned plans and the other

Connector uses Non-Partitioned plans (eg. MOXE and MemSQL), the join will be executed by RapidsDB,

and RapidsDB will push down as much of the processing as possible before performing the join.

Example: select l_orderkey, l_partkey, p_mfgr from part join lineitem on p_partkey = l_partkey and

p_mfgr = 'LG' and l_shipdate <= '2020-01-01';

This is the same query as the examples above, but in this example the PART table is managed by MOXE

and the LINEITEM table is managed by Oracle.

RapidsDB SQL Syntax Guide Page 59 © Borrui Data Technology Co. Ltd 2022

Figure 4. Combination of Partitioned and Non-Partitioned Plans

Figure 4 shows that the data from the PART table will be retrieved from MOXE in parallel using a

Partitioned plan, and the data from the LINEITEM table will be retrieved from Oracle using a Non-

Partitioned plan. The steps of the plan will be:

1 Execute a partitioned fetch from MOXE against the PART table, and apply a filter to the

data (p_mfgr=’LG’)

2 Build a set of Bloom filters using the data returned from the PART table for each partition

3 Execute a non-partitioned fetch from Oracle against the LINEITEM table with the predicate

l_shipdate<=’2020-01-01’

4 Send the bloom filters to the node with the LINEITEM data and join the resulting rows with

the rows returned from the PART table

5 The DQC will merge the results from the two nodes doing the Bloom joins and then return

the results to the user

RapidsDB SQL Syntax Guide Page 60 © Borrui Data Technology Co. Ltd 2022

4.5 RapidsDB Join Algorithms
To reduce network data movement, RapidsDB automatically distributes join operations based on the

network location(s) of the data.

The RapidsDB join optimizer analyzes available information about the size and location of the join

operands (the tables or subqueries participating in the join) and plans the join operation with the goal of

minimizing network cost by executing it co-locally with the data. If one or both operands are distributed

across multiple network nodes, RapidsDB partitions the join operation and executes join operators on

multiple nodes in parallel.

For equi-joins (i.e. where the join predicate contains at least one equality condition between the two

operands) RapidsDB uses a hash join algorithm. The join operator(s) ingest the rows of one operand and

build a hash index of the join keys for those rows. The operator then streams the rows of the other

operand, looking up each row’s join key in the index to determine whether it can satisfy the join

predicate.

If the operands of an equi-join operator are not co-located, data must be streamed over the network. In

this case a Bloom filter is dynamically created and sent to the location(s) from which data will be

streamed. A Bloom filter is effectively a much smaller (but also less accurate) hash index that yields a

simple yes/no answer as to whether a given row can potentially participate in the join. Candidate rows

are skipped if they don’t satisfy the filter, eliminating the need to send those rows over the network to

be tested against the join predicate. Although a Bloom filter is not perfectly accurate (it will allow a few

unqualified rows to pass), it nonetheless reduces network transmission significantly in most cases,

resulting in significantly higher join performance.

For non equi-joins RapidsDB performs a distributed cross-join. To reduce network cost, the optimizer

tries to plan the query such that the join operator(s) will run co-locally with the larger operand. Rows of

the other operand are broadcast (if they are not co-located) and the join operator(s) apply the join

predicate to every possible row combination to find combinations that satisfy the predicate. Testing all

combinations can be quite time consuming, so joins of this type are not advisable if the operands have a

large number of rows.

5 INSERT
The user can insert data into tables in the schema managed by the following Connectors:

• MOXE

• MySQL

• MemSQL

• Oracle

• Postgres

• Greenplum

• Hadoop

RapidsDB SQL Syntax Guide Page 61 © Borrui Data Technology Co. Ltd 2022

• JDBC

The syntax for the INSERT command is:

NOTES:

1. The catalog and schema names are used to identify which Connector the INSERT command

should be sent to. The catalog name is only needed in the situation where the schema name is

not unique.

2. For an INSERT … SELECT, the data types in the result set from the SELECT must be compatible

with the data types for the target insert table.

3. FOR INSERT … SELECT the tables specified in the INSERT and SELECT clauses can be in different

schema managed by different Connectors.

Example:

The INSERT would be sent to the Connector managing the schema named test to insert data into

table t1

The INSERT for two rows would be sent to the Connector managing the schema named test to

insert data into table t1

The INSERT would be sent to the MySQL Connector managing the schema named test to insert

data into table t1 for columns c1 and c2, with default values for any other columns in table t1.

The INSERT would be sent to the MOXE Connector.

INSERT INTO [catalog.][schema.]<table name> [(col_name,...)]
VALUES (expr,...),(...),...

INSERT INTO [catalog.][schema.]<table name> [(col_name,...)]

SELECT select-query
col_name = insert_expr

[, col_name = insert_expr] ...]

select-query: any valid select query as defined by section 2

• INSERT INTO test.t1 VALUES (1,’test text’, '2015-01-01 00:00:00');

• INSERT INTO test.t1 VALUES (1,’test text’, '2016-01-01 00:00:00'),(2,’text’, ‘2016-02-01

12:00:00’);

• INSERT INTO mysql.test.t1 (c1,c2) VALUES (1,’test text’);

• INSERT INTO moxe.t1 SELECT t1, t2, t3 FROM memsql.test.t2;

RapidsDB SQL Syntax Guide Page 62 © Borrui Data Technology Co. Ltd 2022

6 DDL
The user can create and drop tables in the schema managed by the following types of Connectors:

• MOXE

• MySQL

• MemSQL

• Oracle

• Postgres

• Greenplum

• JDBC

• Hadoop (when used with the Hive metastore)

6.1 CREATE TABLE
The syntax for the CREATE TABLE command is:

CREATE TABLE [IF NOT EXISTS] <tableReference>

(

 ...

 ...

[PARTITION [BY] (<expr>, ...)] [COMMENT <string>]

where:

<tableReference> is:

[catalog.][schema.]<table name>

<column definition> is:

<columnName> <type> [[NOT] NULL] [COMMENT <string>]

<type> is:

INTEGER [(precision)] |

DECIMAL [(scale[, precision])] |

FLOAT |

VARCHAR [(size)] |

BOOLEAN |

DATE |

TIMESTAMP

<column name> is: <SQL identifier>

 is:

RapidsDB SQL Syntax Guide Page 63 © Borrui Data Technology Co. Ltd 2022

NOTES:

1. The catalog and schema names are used to identify which Connector the CREATE TABLE

command should be sent to. The catalog name is only needed in the situation where the

schema name is not unique.

2. The column name must be a valid SQL identifier (see 1.1.1). If the column name is a reserved

word then it must be enclosed in double quotes, however, the target database may still reject a

quoted identifier for some reserved words. For example, Postgres will not accept “select” as a

quoted identifier for a column name.

3. After creating the table, the metadata for the associated Connector will be refreshed, and there

is no need to manually run the REFRESH command.

4. For the Integer, Float, Decimal, and VARCHAR data types the actual size, precision and scale of

the columns will be determined by the underlying data store and can be different from the value

specified by the user. The DESCRIBE TABLE command can be used to see the column

information, for example:

(refer to the Rapids-shell User Guide for more information on describe table)

The column information in the COLUMNS table in the RapidsDB System Metadata (see 9.9) for

the created table reflects the type, size, precision and scale of columns as reported by the

underlying data store and interpreted by RapidsDB. The following query can be used to see the

column information for the created table:

INDEX <indexName> [ON] (<columnName>, ...)

rapids > describe table region;

TABLE_NAME

SCALE

COLUMN_NAME DATA_TYPE ORDINAL IS_PARTITION_KEY IS_NULLABLE PRECISION

REGION

0

R_REGIONKEY INTEGER false false 10

REGION

NULL

R_NAME VARCHAR false false 25

REGION

NULL

R_COMMENT VARCHAR false false 152

3 row(s) returned (0.04 sec)

SELECT * FROM rapids.system.columns

RapidsDB SQL Syntax Guide Page 64 © Borrui Data Technology Co. Ltd 2022

The tables below show how the data types are handled across MOXE, MySQL, MemSQL,

Postgres (includes Greenplum) and Oracle when issuing a CREATE TABLE statement from the

rapids-shell:

MOXE

Data Type MOXE Data Type Comments

INTEGER INTEGER Precision=19

INTEGER(n) INTEGER Precision ignored and set to 19

FLOAT FLOAT 64-bit double precision

FLOAT(n) FLOAT 64-bit double precision

DECIMAL DECIMAL(19,0)

DECIMAL(p,s) DECIMAL(p,s) Maximum precision of 19

BOOLEAN BOOEAN

DATE DATE

TIMESTAMP TIMESTAMP Maximum of 6 digits precision for seconds

VARCHAR VARCHAR Defaults to maximum size of 65,536 bytes

VARCHAR(n) VARCHAR(n) The maximum size is 65,536 bytes.

MEMSQL

Data Type MemSQL Data Type Comments

INTEGER BIGINT Precision=19

INTEGER(n) BIGINT Precision=19

FLOAT DOUBLE Precision=22

WHERE catalog_name = ‘<catalog name for new table>’ AND

schema_name = ‘<schema name for new table>’ AND

table_name =’ <name of new table>’;

RapidsDB SQL Syntax Guide Page 65 © Borrui Data Technology Co. Ltd 2022

FLOAT(n) DOUBLE Precision=22

DECIMAL DECIMAL(19,0)

DECIMAL(p,s) DECIMAL(p,s) Max precision is 65, max scale is 30

BOOLEAN TINYINT(1)

DATE DATE

TIMESTAMP TIMESTAMP

VARCHAR VARCHAR Defaults to 255 characters

VARCHAR(n) VARCHAR(n) Max of 21,845

MYSQL

Data Type MemSQL Data Type Comments

INTEGER BIGINT Precision=19

INTEGER(n) BIGINT Precision=19

FLOAT DOUBLE Precision=22

FLOAT(n) DOUBLE Precision=22

DECIMAL DECIMAL(19,0)

DECIMAL(p,s) DECIMAL(p,s) Max precision is 65, max scale is 30

BOOLEAN TINYINT(1)

DATE DATE

TIMESTAMP TIMESTAMP

VARCHAR VARCHAR Defaults to 255 characters

VARCHAR(n) VARCHAR(n) Values in VARCHAR columns are variable-
length strings. The length can be specified
as a value from 0 to 65,535. The effective
maximum length of a VARCHAR is subject
to the maximum row size (65,535 bytes,
which is shared among all columns)

RapidsDB SQL Syntax Guide Page 66 © Borrui Data Technology Co. Ltd 2022

Oracle

Data Type Oracle Data Type Comments

INTEGER INTEGER Precision=19

INTEGER(n) INTEGER Precision ignored and set to 19

FLOAT FLOAT 64-bit double precision

FLOAT(n) FLOAT 64-bit double precision

DECIMAL DECIMAL(19,0)

DECIMAL(p,s) DECIMAL(p,s) Maximum precision of 19

BOOLEAN BOOEAN

DATE DATE

TIMESTAMP TIMESTAMP Maximum of 6 digits precision for seconds

VARCHAR VARCHAR Defaults to maximum size of 65,536 bytes

VARCHAR(n) VARCHAR(n) The maximum size is 65,536 bytes.

Postgres

Data Type Postgres Data Type Comments

INTEGER BIGINT Precision=19

INTEGER(n) BIGINT Precision=19

FLOAT FLOAT Precision=53

FLOAT(n) FLOAT Precision=53

DECIMAL DECIMAL(38,12)

RapidsDB SQL Syntax Guide Page 67 © Borrui Data Technology Co. Ltd 2022

DECIMAL(p,s) DECIMAL(38,12) Max precision is 65, max scale is 12.

Precision and scale are ignored and will

always be set to 38 and 12 respectively

BOOLEAN Not supported

DATE DATE

TIMESTAMP TIMESTAMP Maximum of 6 digits precision for

seconds

VARCHAR VARCHAR Defaults to maximum size of 65,536 bytes

VARCHAR(n) VARCHAR(n) The maximum size is 65,536 bytes.

Examples:

This command would be sent to the Connector managing the schema named “test” to create

the table “t1”

This command would be sent to the Connector named “mysql” that is managing the schema

“test” to create the table “t1”, with comments on all of the columns as well as the table.

This command would be sent to the Connector managing the schema named “test” to create

the table “t1” with the first column being named “YEAR”. This is an example of using a quoted

identifier for a column name that is a reserved word.

6.2 Creating MOXE Tables
MOXE supports two types of tables, partitioned tables (see 6.2.1) and reference tables (see 6.2.2) as

described below.

6.2.1 Partitioned Tables

A partitioned table is a table where the data is distributed across all of the nodes in the RapidsDB cluster

where the associated MOXE Connector is running, and the data is partitioned using the columns

specified by the “PARTITION [BY]” clause.

CREATE TABLE test.t1 (c1 integer not null, c2 varchar(64), c3 timestamp);

CREATE TABLE mysql.test.t1 (c1 integer not null comment 'first column', c2 varchar(64)

comment 'second column', c3 timestamp comment 'third column') comment 'test table';

CREATE TABLE test.t1 (“YEAR” integer not null, c2 varchar(64), c3 timestamp);

RapidsDB SQL Syntax Guide Page 68 © Borrui Data Technology Co. Ltd 2022

The following example creates a partitioned MOXE table with the column s_suppkey as the partitioning

column:

This table also has a comment on the column s_suppkey and a table level comment. The comments can

be seen by querying the RapidsDB COMMENTS and TABLES tables as shown below:

rapids > select * from tables where table_name='SUPPLIER';

CATALOG_NAME SCHEMA_NAME TABLE_NAME IS_PARTITIONED COMMENT

PROPERTIES

MOXE MOXE SUPPLIER true Supplier

table NULL

1 row(s) returned (0.07 sec)

rapids > select * from columns where table_name='SUPPLIER';

CATALOG_NAME SCHEMA_NAME TABLE_NAME COLUMN_NAME DATA_TYPE

ORDINAL IS_PARTITION_KEY IS_NULLABLE PRECISION PRECISION_RADIX

SCALE CHARACTER_SET COLLATION COMMENT PROPERTIES

MOXE MOXE SUPPLIER S_SUPPKEY INTEGER

0 true false 64 2

NULL NULL NULL Supplier key NULL

MOXE MOXE SUPPLIER S_NAME VARCHAR

1 false true NULL NULL

NULL UTF16 BINARY NULL NULL

MOXE MOXE SUPPLIER S_ADDRESS VARCHAR

2 false true NULL NULL

NULL UTF16 BINARY NULL NULL

rapids > create table moxe.SUPPLIER (

> s_suppkey integer NOT NULL comment 'Supplier key',

> s_name varchar(25),

> s_address varchar(40),

> s_nationkey integer,

> s_phone varchar(15),

> s_acctbal decimal(17,2),

> s_comment varchar(101)

>) PARTITION (s_suppkey) comment 'Supplier table';

0 row(s) returned (0.15 sec)

RapidsDB SQL Syntax Guide Page 69 © Borrui Data Technology Co. Ltd 2022

7 row(s) returned (0.08 sec)

MOXE MOXE SUPPLIER S_NATIONKEY INTEGER

3 false true 64 2

NULL NULL NULL NULL NULL

MOXE MOXE SUPPLIER S_PHONE VARCHAR

4

NULL UTF16

false

BINARY

true

NULL

NULL

NULL

NULL

MOXE MOXE SUPPLIER S_ACCTBAL DECIMAL

5

2 NULL

MOXE

false

NULL

MOXE

true

NULL

SUPPLIER

17

NULL

S_COMMENT

10

VARCHAR

6 false true NULL NULL

NULL UTF16 BINARY NULL NULL

6.2.2 Reference Tables

Reference tables are tables that are replicated to each node in the RapidsDB cluster where the

associated MOXE Connector is running. Reference tables are typically used for small dimension tables

which can result in improved query performance when doing JOINs because the JOINs to the reference

tables can be completed locally on each node in the RapidsDB cluster avoiding any network overhead.

The following example creates a replicated table that will be replicated to every RapidsDB node in the

cluster:

6.3 CREATE TABLE [AS] SELECT
Allows the user to create a table automatically from the results of a query and then insert the query

results into the table. This command can be used from the rapids-shell or from JDBC.

CREATE TABLE AS SELECT is a simple way to create a copy of an existing table or to create a materialized

copy of a result set. It is similar to the INSERT…SELECT statements except that the INSERT…SELECT

statement appends rows to a table that already exists. As such, CREATE TABLE [AS] SELECT is a quick and

easy way to take a copy of a result set and save it in a separate table.

The column names will default to the column names from the associated columns in the SELECT query,

but the names can also be specified explicitly. If the SELECT query is providing literal values for the

columns, then the column names will be “col1”, “col2”, etc.

rapids > create table MOXE.REGION (

> r_regionkey integer not null,

> r_name varchar(25) not null,

> r_comment varchar(152)

>);

0 row(s) returned (0.27 sec)

RapidsDB SQL Syntax Guide Page 70 © Borrui Data Technology Co. Ltd 2022

The data types for the columns in the newly created table will default to the data types from the

associated columns in the SELECT query. The user can also specify the data types to be used and in this

case if the data types of the columns from the SELECT query do not match those specified for the table

then the columns of the SELECT query will be cast to match. If this results in an incompatible data type

cast then an error will be returned.

The addition of the column data types as well as the AS clause is a RapidsDB extension to the SQL

standard.

Syntax:

6.3.1 Examples

statement := CREATE TABLE [IF NOT EXISTS] <tableName>

[(<tableDefinition>)]

[<partitionInformation>]1

[<tableProperties>] 2

[AS] <subquery> [WITH [NO] DATA];

tableDefinition := <objectDefinition> [, <objectDefinition> [, ...]]

objectDefinition:= <columnDefinition> | <tableConstraint> | <indexDefinition>

columnDefinition := <columnName> [<columnType> [<columnConstraint>]]

columnConstraint := NOT NULL | PRIMARY KEY | UNIQUE KEY

tableConstraint := PRIMARY KEY (<expression>)

indexDefinition := UNIQUE KEY (<expression>) | KEY (<expression>)

subquery := <selectOrValuesQuery> | (<selectOrValuesQuery>)

selectOrValuesQuery:= <selectQuery> | <valuesQuery>

selectQuery := SELECT <selectQueryExpression>

valuesQuery := VALUES (<expression> [, <expression [, ...]]) [, (...)]

RapidsDB SQL Syntax Guide Page 71 © Borrui Data Technology Co. Ltd 2022

Creates a table t with columns and data from t1. This statement is compliant with the SQL

standard.

Creates a table t7 which is a copy of the table t1 but without any data . This statement is

compliant with the SQL standard.

Creates a table t8 with column name from t1.

RapidsDB SQL Syntax Guide Page 72 © Borrui Data Technology Co. Ltd 2022

Creates a table t1 with automatically named columns (“col1”, “col2”, “col3” and “col4”) and one

row of data from the VALUES clause. The data types of the columns are determined by how the

literals are expressed in the VALUES clause according to the SQL standard (e.g., 12.1 is a decimal

while 1.0e0 is a float).

Creates a table t with columns named “id”, “name”, “price” and “disc” and filled with data from

columns a, b and c from table u. Apart from the AS clause this statement is compliant with the

SQL standard.

Attempts to create a table t3 where the column data type for the column “disc” is not

compatible with the data type for the fourth column of the source table, “col4” and so an error

is returned.

6.3.2 Semantics

1. In keeping with the regular CREATE TABLE statement, the catalog and schema names of the target

table name will determine which data source will ultimately hold the table and data for this query.

RapidsDB SQL Syntax Guide Page 73 © Borrui Data Technology Co. Ltd 2022

2. If a table with the same name as the target table already exists in RapidsDB and IF NOT EXISTS is not

specified, then the query will fail and no data from the subquery will be copied into the target table.

3. If a table with the same name as the target table already exists in RapidsDB, and IF NOT EXISTS is

specified, then the query will return a success indicator to the user but no data from the subquery

will be copied into the target table.

4. Specifying a <tableDefinition> allows the user to rename columns from the subquery. This end result

can also be achieved by applying column aliases to the subquery instead. If the <tableDefinition> is

not specified then the column names from the subquery will be used instead.

5. If the <tableDefinition> contains any duplicate column names then an error will be reported.

6. If a <tableDefinition> is specified and if the number of column names in <columnList> is not equal to

the number of columns in the subquery then an error will be returned.

7. If a <tableDefinition> is specified with data types and the data types are incompatible with the

column types of the SELECT statement then an error will be returned. An example of this would be

specifying a column with a timestamp data type when the corresponding column in the SELECT

query returns a boolean. The rules surrounding what data types can be cast are determined by the

RapidsDB CAST operator.

8. When the target table is created there will be no indexes created on it unless a <tableDefinition> is

provided and it contains index definitions. Creating a target table based on a query on a source table

will not result in indexes from the source table being copied to the target table unless they are

explicitly specified in a <tableDefinition> clause.

9. If a <tableDefinition> clause is not specified then the precision and scale of each column will be set

according to the table below:

Datatype Precision Scale

Integer 19 0

Decimal Will be preserved from result

column up to a maximum of 19. If

>19 or if the precision is unknown

then it will be set to 19.

Will be preserved from the result column

up to a maximum of 7. If the scale is >7 or

the scale is unknown then it will be set to

7.

Float Will not be specified. All floating

point columns will be created with

a datatype of FLOAT.

No scale. Scale has no meaning for an

approximate data type.

Varchar Will be preserved from the result

column.

If the result column has no

precision then it will be set to 8000.

No scale.

RapidsDB SQL Syntax Guide Page 74 © Borrui Data Technology Co. Ltd 2022

All other types No precision. No scale.

10. The nullability properties of columns in the SELECT query will be preserved in the target table being

created. However no uniqueness constraints will be preserved as this implies automatic index

creation.

11. If the WITH NO DATA clause is specified then the target table will be created according to the

column definitions of the subquery however no data will be copied into the target table from the

subquery.

12. If it is possible for RapidsDB to do so, the target table being created will be dropped if an error

occurs while copying data into the table. Because RapidsDB is not transactional, there will be error

scenarios where the query may fail and it is not possible for RapidsDB to drop the incomplete table

automatically (e.g., if there is a problem with the connector, internal RapidsDB errors, etc).

13. By specifying table and column constraints in the CREATE TABLE AS SELECT statement (e.g., CREATE

TABLE t (aa INTEGER PRIMARY KEY) AS SELECT a FROM u;), if the SELECT query retrieves a result set

that does not match the column constraint (e.g., the values of column a in the above query are not

unique) then the query will fail while copying the data. For a large data set, it could take a while

before this constraint violation is detected and the failure status returned to the user. Examples of

this would include violations of column uniqueness or nullability (e.g., CREATE TABLE t (col1

INTEGER NOT NULL) AS VALUES (NULL);)

6.3.3 Exclusions

1. The CREATE TABLE AS SELECT statement will not be executed transactionally since RapidsDB has no

support for transactions. This means that it is possible for the table to be created successfully but

an error occurs while copying the data such that the statement fails and the table is not able to be

cleaned up (e.g., a communication problem with the underlying data source).

2. In this release CREATE TABLE AS SELECT statements will not support being pushed down directly to

the underlying data source if the entire statement occurs directly in that data source. This is because

the syntax of CREATE TABLE AS SELECT statements can vary significantly across data sources (and

RapidsDB only supports a common subset that is defined in the standard.

3. RapidsDB will not support SELECT…INTO statements as a synonym of CREATE TABLE AS SELECT.

4. If a value from the subquery exceeds the precision or scale of the table definition then the

underlying storage engine may return an error or it may silently truncate/round the data value when

it is being inserted into the table.

6.3.4 Error Conditions

The following are a common set of conditions that will cause RapidsDB to generate an error:

1. Specifying a column name list where the number of column names does not match the number

of columns in the subquery.

RapidsDB SQL Syntax Guide Page 75 © Borrui Data Technology Co. Ltd 2022

2. Specifying a column name list or table definition where a column name is not unique.

3. Specifying a full table definition but the data type of a column is not compatible with the data

type of the corresponding column in the subquery and the subquery value cannot be cast.

4. Specifying a VALUES subquery where all values for a given column are NULL. In this case the

data type of the column for the CREATE TABLE statement cannot be determined.

5. Specifying a VALUES subquery with multiple rows where the data type for a given column is not

consistent across all rows.

6. Specifying a table definition with a column constraint (e.g., NOT NULL) where the subquery data

does not conform to that constraint (e.g. contains NULL values).

7. Specifying a table definition with a table constraint (e.g., PRIMARY KEY) where the subquery

data does not conform to that constraint (e.g., non-unique values across PK columns).

8. Specifying a column name and data type for some columns but not specifying a data type for all

columns.

6.4 CREATE INDEX
The syntax for the CREATE INDEX command is:

NOTE:

MOXE does not support creating indexes.

Example:

This command would be sent to the MemSQL Connector that is managing the schema “dw” to

create a unique index on table “t1”.

6.5 DROP TABLE
The syntax for the DROP TABLE command is:

NOTES:

1. The catalog and schema names are only needed when the <table name> is not unique.

CREATE UNIQUE INDEX idx1 on memsql.dw.t1 (c1);

CREATE [UNIQUE] INDEX [IF NOT EXISTS] <indexName> ON <tableReference> (<columnName>, ...)

where:

<tableReference> is:

[[<catalog>.] [<schema>.]] tableName

DROP TABLE [IF EXISTS] [[<catalog>.]<schema>.]<table name>;

RapidsDB SQL Syntax Guide Page 76 © Borrui Data Technology Co. Ltd 2022

2. After dropping the table, the metadata for the associated Connector will be refreshed, and

there is no need to manually run the REFRESH command.

Examples:

This command would be sent to the Connector managing the schema named “test” to drop the

table “t1”

This command would be sent to the MemSQL Connector that is managing the schema “test” to

drop the table “t1”

6.6 TRUNCATE TABLE
The TRUNCATE TABLE deletes all of the data from a table and any associated indexes.

The syntax for the TRUNCATE TABLE command is:

NOTES:

1. The catalog and schema names are only needed when the <table name> is not unique.

Examples:

This command would be sent to the RapidsSE Connector to delete all of the data from table t1.

This command would be sent to the MemSQL Connector that is managing the schema “test” to

delete the data from table t1.

7 IMPORT/EXPORT Using IMPEX Connector

7.1 Overview
The IMPEX Connector is a new style of Connector that was introduced in Release 4.3. An IMPEX

Connector supports the ability to treat disk files as regular tables which can participate in federated

queries (ie. in SELECT or INSERT queries). The implication of this is that the user does not need to go

through an ETL process in order to load the data from the files into regular tables, such as MOXE tables,

TRUNCATE TABLE [[<catalog>.]<schema>.]<table name>;

TRUNCATE TABLE rapidsse.public.t1

DROP TABLE test.t1;

DROP TABLE memsql.test.t1;

TRUNCATE TABLE memsql.test.t1;

RapidsDB SQL Syntax Guide Page 77 © Borrui Data Technology Co. Ltd 2022

instead, the files can be queried directly from the disk. For Release 4.3, an IMPEX Connector can read

csv (delimited) files from any node in the RapidsDB Cluster, in future releases other file systems such as

Amazon S3, Google Cloud and HDFS will be supported along with other file formats such as Parquet and

ORC. After any data has been written to disk (in a supported format, ie csv for Release 4.3) it is

available for querying. If needed, the user can also use an IMPEX Connector to load all or a subset of

the data into regular tables, such as MOXE tables or other federated data sources such as Oracle,

Postgres or MySQL. When reading the data from disk, an IMPEX Connector supports both column

pruning and predicate pushdown so that only the data that is needed for the query is passed to the

RapidsDB Execution Engine thereby allowing very large data files to be processed by the RapidsDB

Engine where the size of the data can exceed the memory of the system. When reading the disk files

the user does not need to define a schema for the table, an IMPEX Connector can estimate the data type

for each field in the data by reading a sample of the data and the imputing the data type based on the

actual data. This means that users can do fast exploration of data files without having to first assign a

schema for the table. For example, by using a LIMIT clause the user can quickly look at a subset of the

data and then can use other SQL predicates to do more sophisticated analysis of the data. If the schema

for a file (or set of files) is known, then the user can provide that schema to the IMPEX Connector as part

of the query.

An IMPEX Connector also supports the capability to write query results to files. Finally, an IMPEX

Connector supports bulk import to allow for the rapid loading of data from disk files into any federated

tables, and bulk export to allow for the rapid writing of the contents of any federated tables to disk files.

Bulk EXPORT provides the ability for the user to take a snapshot of the federated database, and bulk

IMPORT provides the ability to reload that snapshot.

Example:

RapidsDB SQL Syntax Guide Page 78 © Borrui Data Technology Co. Ltd 2022

In the example above the IMPEX Connector is reading data from the folder “/data/new_orders” on

RapidsDB node “db3” and that data is then getting joined with data from two MOXE tables, “cust” and

“inv”.

7.2 IMPEX Connector Type
The IMPEX Connector type is used for creating Connectors that are used for doing import and export

operations. The following sections provide more details on how to configure and use IMPEX

Connectors.

7.3 Creating an IMPEX Connector
The user can create import and export Connectors using the IMPEX Connector type. To create an IMPEX

Connector use the following command

where <key> is one of the supported IMPEX Connector properties as defined in the next section.

Example:

Would create an IMPEX Connector named “CSV” that can run on any node in the RapidsDB cluster and
where the delimiter character is '|', and the base path is the root directory ('/'). All other IMPEX
properties would use default values as described below (see 11.4).

This would create the same Connector as the previous example with the one difference being that this
Connector could only run on the RapidsDB node named “db1”.

7.4 IMPEX Connector Properties
The IMPEX Connector type supports the following properties which can be set either when creating the

Connector using the CREATE CONNECTOR command (see examples below, also, refer to the Installation

and Management Guide for more information on creating Connectors) or as part of an import reference

(see 7.6) or export reference (see 7.7):

CREATE CONNECTOR CSV TYPE IMPEX WITH DELIMITER='|', PATH='/';

CREATE CONNECTOR <name> TYPE IMPEX [WITH <key>='<value>' [,<key>='<value>']]

[NODE * | NODE <node name> [NODE <node name>] [<further node names>]];

CREATE CONNECTOR CSV TYPE IMPEX WITH DELIMITER='|', PATH='/' NODE 'db1';

RapidsDB SQL Syntax Guide Page 79 © Borrui Data Technology Co. Ltd 2022

Key: Default Syntax Description

FORMAT 'CSV' 'CSV' | 'RAW' Specifies the file format:

• CSV: A delimited file (see
section 11.5)

• RAW: will produce a table with
a single VARCHAR column
containing the full text of each

 record in the imported file. See
section 11.9.2.9 for examples)

PATH '/var/tmp/rapids' '<fully qualified path>' Specifies the fully qualified path
name to use as the base path name
for all import references (see 11.6)
or export references (see 11.7).

ERROR_PATH '/var/tmp/rapids_
errors'

'<fully qualified path>' Specifies the fully qualified path
name to use as the base path for
the error files generated if an
import operation fails (see 11.13.1
for more information).

ERROR_LIMIT 10 Integer, -1 | 0 | >0 Specifies the maximum number of
allowable errors on an import
operation. Once the limit is
reached the import will be
terminated. The possible values
are:

-1 no limit
0 terminate on first error
>0 terminate after specified
number of errors
See 11.13.2 for more information

RapidsDB SQL Syntax Guide Page 80 © Borrui Data Technology Co. Ltd 2022

BACKUP false [] | true | false For EXPORT only.

For bulk export operations (see
11.12), when the REPLACE option is
specified, if BACKUP is “false”, then
any existing files with a suffix of
“.csv” in the specified folder or sub-
folders prior to the export
operation will get deleted and then
new files created for the export.

For bulk export operations (see
11.12), when the REPLACE option is
specified, if BACKUP is “true”, then
any existing files with a suffix of
“.csv” in the specified folders or
sub-folders prior to the export
operation will be moved to a
backup folder so that they can be
recovered if needed and then new
files created for the export.

Note: if “true” or “false” are
omitted and just the keyword
“BACKUP” is specified, that is
equivalent to “true”.

CHARSET ‘UTF-8’ ‘<string>’
as defined by the Java
charset class
https://docs.oracle.com
/javase/8/docs/api/java
/nio/charset/Charset.ht
ml

Specifies the character set to be
used. Some examples:
‘GBK’
‘GB2312’
‘GB18030’

‘Big5’

DELIMITER ‘,’ ‘<char>’

Non-empty, single
character string

Specifies the field delimiter
character. This can only be a single
character.

https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html
https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html
https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html
https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html

RapidsDB SQL Syntax Guide Page 81 © Borrui Data Technology Co. Ltd 2022

ENCLOSED_BY ‘”’
double quote

‘<char>’
Non-empty, single
character string

Specifies whether a field is
optionally enclosed by a specified
character. This is commonly used
to specify that string fields are
optionally enclosed by either a
single quote or double quote
character and that character should
not be included as part of the field
data. If the same character is also
included as part of the field data,
then it must be escaped (see
ESCAPE_CHAR below for more
details).

ESCAPE_CHAR ‘\’ ‘<char>’
Non-empty, single
character string

Specifies the character to be used
as an escape character. This will
allow the user to include embedded
field delimiters and enclosed_by
characters in the data .

FILTER ‘*.*’ ‘<string>’
Non-empty, character
string using a REGEX
format

For IMPORT only.

The FILTER property allows the user
to control which files are imported
in a wildcard import operation and,
optionally, how table names are
created from the names of
imported files. The FILTER value is a
character string containing a Java
regular expression (a “regex”).

When performing a wildcard
import, IMPEX examines each
filename available from the import
source. Only files whose names
satisfy the FILTER regex are
imported. (For a tutorial on Java
regular expressions, see

RapidsDB SQL Syntax Guide Page 82 © Borrui Data Technology Co. Ltd 2022

 https://www.oracle.com/technical-
resources/articles/java/regex.html)

A "capturing group" can be used in
the regex to control how IMPEX
creates a table name from the
name of an imported file. The
characters matched by the first
group in the regex are used as the
table name. If the regex contains no
groups, then the table name will
match the first part of the file name
(before any dot suffixes).

Note: for convenience, a FILTER
value that starts with an asterisk is
interpreted as a simple filename
filter. For example FILTER='*.csv'
will import all files with a “.csv”
extension.

GUESS false [] | true | false For IMPORT only

When “false” specifies that the
Connector should treat all columns
as polymorphic strings, which will
be automatically cast into the
appropriate data types depending
on the query (see 11.9.2.5 for more
information).

When “true” specifies that the
Connector should derive the
column data types for any columns
whose data type has not been
specified. The data types are
derived by sampling the data being
imported and then determining
what the appropriate data type
would be for each input field in the
sampled data. For example, if the
sampled data contained 100
records, and a given field contains
alphanumeric characters for all 100
records, then it would be mapped
to a VARCHAR column, if the field
contained just integer characters
then it would be mapped to an

http://www.oracle.com/technical-

RapidsDB SQL Syntax Guide Page 83 © Borrui Data Technology Co. Ltd 2022

 INTEGER, and so on (see 11.9.2.5
for more information).

Note: if “true” or “false” are
omitted and just the keyword
“GUESS” is specified, that is
equivalent to “true”.

HEADER false [] | true | false When “true” specifies that the data
file has a header record which has
the column names to use on an
import, or has the column names
from the result set for an export.

When “false” specifies that there is
no header record.

Note: if “true” or “false” are
omitted and just the keyword
“HEADER” is specified, that is
equivalent to “true”.

TERMINATOR '\n' '\n' Specifies how records are
terminated. For this release the
TERMINATOR is fixed as '\n', with
an optional '\r'

TRAILING false [] | true | false When “true” IMPEX will ignore a
trailing field separator (i.e. where
the field separator is immediately
followed by the record terminator
character) on each line of a file
being imported and will append a
trailing separator to each line of a
file being exported.

When “false” a trailing field
separator will indicate a null value
for the last column of the record
being imported. For export no
trailing field separator will be
written out.

Note: if “true” or “false” are
omitted and just the keyword
“TRAILING” is specified, that is
equivalent to “true”.

Examples:

RapidsDB SQL Syntax Guide Page 84 © Borrui Data Technology Co. Ltd 2022

Would create an IMPEX Connector named “CSV” where the delimiter character is '|'. The “PATH”
property was not set and so would default to “/var/tmp/rapids”.

Would create an IMPEX Connector named “CSV” where the delimiter character is '|' and the “PATH”
property is set to the root directory (“/”).

7.5 CSV (Delimited) File Formatting
This section describes how IMPEX Connectors handle the different CSV file formatting properties

described in the previous section when reading and writing delimited data.

7.5.1 Text Handling

7.5.1.1 ESCAPE SEQUENCES

There are a set of special characters that only come into effect when prefixed with the escape character

(by default the escape character is set to the backslash character). In the following table, the

ESCAPE_CHAR is set to the backslash character. When an escape sequence is detected in the input data

it will get replaced with its associated ASCII character as shown in the table below:

Escape Sequence ASCII Character

\b A backspace character <x08>

\f A form feed character <x0C>

\n A newline (linefeed) character <x0A>

\r A carriage return character <x0D>

\t A tab character <x09>

\v A vertical tab character <x0B>

On output, any ASCII escape characters will get replaced by their associated escape sequence.

Example 1:

This example shows the output for a file using the tab (\t) and newline (\n) escape characters.

Input file: /var/tmp/rapids/tab_and_newline.csv:

CREATE CONNECTOR CSV TYPE IMPEX WITH DELIMITER='|';

123456789012345678901234567890

\tTabbed field\nNewline

CREATE CONNECTOR CSV TYPE IMPEX WITH DELIMITER='|', PATH='/';

RapidsDB SQL Syntax Guide Page 85 © Borrui Data Technology Co. Ltd 2022

Example 2:

This example shows all of the possible escape sequences (using the default escape character) being read

from the file “/var/tmp/rapids/text/escape_seq.csv” and then written out to the file

“/var/tmp/rapids/text/escape_seq_out.csv”.

Input file /var/tmp/rapids/text/escape_seq.csv:

Output file: /var/tmp/rapids/text/escape_seq_out.csv:

7.5.1.2 Handling of Leading and Trailing Blanks

Leading and trailing space characters are considered part of a VARCHAR column.

When the ENCLOSED_BY (see 7.5.6) is used to enclose the string, the leading and trailing space

characters are ONLY those characters contained within the enclosed string (see example below for more

on this), any space characters outside of the enclosing characters are ignored. When the string is not

enclosed by the ENCLOSED_BY character, then all characters in the field are included, including all

leading and trailing blanks.

Example:

In this example the first record has two fields that are not enclosed by the ENCLOSED_BY character, and

so all of the data between the field delimiters for those fields is included. In the third record, the second

and third fields are enclosed, and so only the characters between the ENCLOSED_BY characters are

included.

File: /var/tmp/rapids/text/lead_trail_blanks.csv:

rapids > select * from ('node://db1/text/tab_and_newline.csv');

COL1

123456789012345678901234567890

Tabbed field

Newline

2 row(s) returned (0.06 sec)

Tab: \t Form Feed: \f Backspace: \b Newline: \n Vertical: \v Return: \r

rapids > select * from ('node://db1/text/escape_seq.csv') to

('node://db1/text/escape_seq_out.csv');

0 row(s) returned (0.08 sec)

"Tab: \t Form Feed: \f Backspace: \b Newline: \n Vertical: \v Return: \r"

RapidsDB SQL Syntax Guide Page 86 © Borrui Data Technology Co. Ltd 2022

7.5.1.3 Empty Strings

An empty (zero-length) string is defined as a field with two adjacent ENCLOSED_BY characters (see

7.5.6) for more information on ENCLOSED_BY character). For example, the second field in the sample

record below would be interpreted as an empty string assuming that the ENCLOSED_BY character is the

double quote character:

Example:

File: /var/tmp/rapids/text/empty_string.csv:

1, 4 leading blanks,3 trailing blanks ,1

2,A2345678901234567890,A1234567890123456789,2

3," 4 leading blanks","3 trailing blanks ",3

rapids > select * from ('node://db1/text/lead_trail_blanks.csv');

COL1 COL2

---- ----

1 4 leading blanks

2 A2345678901234567890

3 4 leading blanks

COL3

3 trailing blanks

A1234567890123456789

3 trailing blanks

COL4

1

2

3

3 row(s) returned (0.07 sec)

rapids > select char_length(col3) from

('node://db1/text/lead_trail_blanks.csv');

[1]

20

20

20

3 row(s) returned (0.06 sec)

1,"",1

rapids > select * from ('node://db1/text/empty_string.csv');

COL1 COL2 COL3

1 1

1 row(s) returned (0.05 sec)

rapids > select char_length(COL2) from ('node://db1/text/empty_string.csv');

[1]

0

1 row(s) returned (0.05 sec)

RapidsDB SQL Syntax Guide Page 87 © Borrui Data Technology Co. Ltd 2022

NOTE – this is different from an empty field, where there are two adjacent field delimiter characters,

which is interpreted as a NULL value (see 7.5.4) for more information on nulls) as shown in the example

below:

File: /var/tmp/rapids/text/null_string.csv:

In this example, fields two through four are all interpreted as null values.

7.5.2 Dates and Timestamps

The format for dates is YYYY-MM-DD, and the format for the time portion of a timestamp is

HH.MM.SS.nnnnnn

Example:

File: /var/tmp/rapids/text/date_and_timestamp.csv

7.5.3 Booleans

The table below specifies the valid input values for booleans:

1,,,,

rapids > select * from ('node://db1/text/null_string.csv');

COL1 COL2 COL3 COL4

1 NULL NULL NULL

1 row(s) returned (0.06 sec)

1,2021-09-01,2021-09-01 11:17:23.123456

2,"2021-09-01","2021-09-01 11:17:23.123456"

rapids > select * from (FILE 'node://db1/text/date_and_timestamp.csv') AS

t(c1 integer, c2 date, c3 timestamp);

C1 C2 C3

-- -- --

1 2021-09-01 2021-09-01 11:17:23.123456

2 2021-09-01 2021-09-01 11:17:23.123456

2 row(s) returned (0.59 sec)

RapidsDB SQL Syntax Guide Page 88 © Borrui Data Technology Co. Ltd 2022

Column value Possible Inputs

FALSE 0
any string start with one of the following characters: f, F, n, N

TRUE >0
any string start with one of the following characters: t, T, y, Y

Example:

File: /var/tmp/rapids/text/booleans.csv:

7.5.4 NULL Values

A null value is represented by an empty field, where an empty field is defined as two adjacent delimiters

with no intervening spaces, or a delimiter followed immediately by the record terminator.

NOTE

This is not the same as an empty string (see 11.5.1.3) which is defined as two adjacent “ENCLOSED_BY”

characters.

0

false

FALSE

n

no

1

true

TRUE

y

YES

rapids > select * from ('node://db1/text/booleans.csv') AS t(c1 boolean);

C1

--

false

false

false

false

false

true

true

true

true

true

10 row(s) returned (0.06 sec)

RapidsDB SQL Syntax Guide Page 89 © Borrui Data Technology Co. Ltd 2022

TH DELIMITER='|');

4 leading blanks 3 trailing blanks 1

12345678901234567890 12345678901234567890 2

" 4 leading blanks" "3 trailing blanks " 3

Example:

File: /var/tmp/rapids/text/null_string.csv:

In this example, fields two through four are all interpreted as null values.

7.5.5 DELIMITER='<char> | \t'

The field delimiter can be a single character or the tab character ('\t').

Example 1: using the pipe character as the delimiter

File: /var/tmp/rapids/text/delimiter.csv

rapids > select * from ('node://db1/text/delimiter.csv' WI

COL1 COL2 COL3 COL4

---- ---- ---- ----

1 4 leading blanks 3 trailing blanks 1

Example 2: using the tab character as the delimiter:

File: /var/tmp/rapids/text/tab_delimiter.csv

2 12345678901234567890 12345678901234567890 2

3 4 leading blanks 3 trailing blanks 3

3 row(s) returned (0.07 sec)

1,,,,

rapids > select * from ('node://db1/text/null_string.csv') AS t(c1 integer,

c2 integer, c3 decimal, c4 varchar);

C1 C2 C3 C4

-- -- -- --

1 NULL NULL NULL

1 row(s) returned (0.07 sec)

1| 4 leading blanks|3 trailing blanks |1

2|12345678901234567890|12345678901234567890|2

3|" 4 leading blanks"|"3 trailing blanks "|3

rapids > select * from ('node://db1/text/tab_delimiter.csv' WITH

DELIMITER='\t');

COL1 COL2 COL3 COL4

RapidsDB SQL Syntax Guide Page 90 © Borrui Data Technology Co. Ltd 2022

1 4 leading blanks 3 trailing blanks 1

2 12345678901234567890 12345678901234567890 2

3 4 leading blanks 3 trailing blanks 3

3 row(s) returned (0.06 sec)

7.5.6 ENCLOSED_BY='<char> ' | "'"

Specifies whether an input field is optionally enclosed by the specified character. This is commonly

used to specify that character fields are enclosed by either a single quote or double quote character and

that character should not be included as part of the field data.

NOTES

1. To explicitly specify a single quote as the delimiter, you must enclose the single quote inside

double quotes, all other characters are specified using single quotes.

2. Use of the ENCLOSED_BY for character fields is optional, and so an input record could include

some fields using the enclosed_by character with other character fields not using the

enclosed_by character as shown in the example below.

3. If the ENCLOSED_BY character is also included as part of the field data, then the character must

be escaped (see ESCAPE_CHAR 7.5.7).

4. When exporting data, character fields will only be enclosed using the ENCLOSED_BY character

when the data for that field includes one or more DELIMITER (see 7.5.5) characters.

5. Numercial and Boolean values cannot be enclosed

The default enclosed_by character is a double quote.

Examples:

ENCLOSED_BY DATA TYPE INPUT DATA TO BE STORED
 VARCHAR 'DAVE's DATA' 'DAVE's DATA'
 VARCHAR "'DAVE's DATA'" 'DAVE's DATA'
 VARCHAR 'DAVE\'s DATA' 'DAVE's DATA'
 VARCHAR '"DAVE"s DATA"' INVALID
 INTEGER '9' INVALID
 DECIMAL '9.0' INVALID
 FLOAT '9.0' INVALID
 TIMESTAMP '2020-09-01 09:00:00' 2020-09-01 09:00:00
 BOOLEAN 'T' FALSE
 BOOLEAN "T" TRUE
 INTEGER "9" 9
 DECIMAL "9.0" 9.0
 FLOAT "9.0" 9.0

RapidsDB SQL Syntax Guide Page 91 © Borrui Data Technology Co. Ltd 2022

 TIMESTAMP "2020-09-01 09:00:00" 2020-09-01 09:00:00

ENCLOSED_BY="'" VARCHAR 'DAVE's DATA' INVALID
 VARCHAR "'DAVE's DATA'" INVALID
 VARCHAR 'DAVE\'s DATA' DAVE's DATA
 VARCHAR '"DAVE"s DATA"' "DAVE"s DATA"
 INTEGER '9' 9
 DECIMAL '9.0' 9.0
 FLOAT '9.0' 9.0
 TIMESTAMP '2020-09-01 09:00:00' 2020-09-01 09:00:00
 BOOLEAN 'T' TRUE
 BOOLEAN "T" FALSE
 INTEGER "9" INVALID
 DECIMAL "9.0" INVALID
 FLOAT "9.0" INVALID
 TIMESTAMP "2020-09-01 09:00:00" 2020-09-01 09:00:00

Example 1: This example uses the default ENCLOSED_BY double quote character.

File: /var/tmp/rapids/text/default_enclosed_by.csv

rapids > select * from ('node://db1/text/default_enclosed_by.csv') AS t(c1

integer, c2 varchar, c3 varchar, c4 boolean, c5 decimal, c6 float, c7

timestamp);

C1 C2 C3 C4 C5 C6 C7

-- -- -- -- -- -- --

1 'DAVE's DATA' DAVE's DATA true 9.0 9.0 2020-09-01 09:00:00.0

1 row(s) returned (0.07 sec)

Example 2: This example sets the ENCLOSED_BY character to a single quote:

File: /var/tmp/rapids/text/single_quote_enclosed_by.csv

rapids > select * from ('node://db1/text/single_quote_enclosed_by.csv' WITH

ENCLOSED_BY="'") AS t(c1 integer, c2 varchar, c3 varchar, c4 boolean, c5

decimal, c6

C1 C2

float, c7 timestamp);

C3

C4

C5

C6

C7

-- -- -- -- -- -- --

1 DAVE's DATA "DAVE"s DATA" true 9.0 9.0 2020-09-01 09:00:00.0

1 row(s) returned (0.59 sec)

1,'DAVE's DATA',"DAVE's DATA",T,9.0,9.0,"2020-09-01 09:00:00"

1,'DAVE\'s DATA','"DAVE"s DATA"',T,9.0,9.0,'2020-09-01 09:00:00'

RapidsDB SQL Syntax Guide Page 92 © Borrui Data Technology Co. Ltd 2022

7.5.7 ESCAPE_CHAR='<char>'

Specifies the character to be used as the escape character. This allows the user to include embedded

field delimiters and enclosed_by characters in the data.

Default: '\' (backslash)

Example 1:

Shows the escaping of the ENCLOSED_BY and DELIMITER characters when those characters are the

defaults. The escaped characters are hilited:

File:/var/tmp/rapids/text/escape_char.csv

Example 2:

Shows the same example as before except in this example the ESCAPE_CHAR is set to the dollar

character. The escaped characters are hilited:

File: /var/tmp/rapids/text/escape_char_dollar.csv

7.5.8 HEADER

Specifies whether the data file has a header record which has the column names to use.

File: /var/tmp/rapids/text/header.csv

id,name,dob

1,Jim Smith,2004-04-01

1,"Escaped ENCLOSED_BY\"",Escaped DELIMITER \,,End of row

rapids > select * from ('node://db1/text/escape_char.csv');

COL1 COL2 COL3 COL4

---- ---- ---- ----

1 Escaped ENCLOSED_BY" Escaped DELIMITER , End of row

1 row(s) returned (0.56 sec)

1,"Escaped ENCLOSED_BY$"",Escaped DELIMITER $,,End of row

rapids > select * from ('node://db1/text/escape_char_dollar.csv' WITH

ESCAPE_CHAR='$') ;

COL1 COL2 COL3 COL4

---- ---- ---- ----

1 Escaped ENCLOSED_BY" Escaped DELIMITER , End of row

1 row(s) returned (0.56 sec)

RapidsDB SQL Syntax Guide Page 93 © Borrui Data Technology Co. Ltd 2022

7.5.9 CHARSET

Specifies the character set to be used. Some examples:

• 'GBK'

• 'GB2312'

• 'GB18030'

• 'Big5'

Refer to https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html for a list of the

possible character set names.

Example:

This example shows the character set being set to the “GBK” character set:

File: /var/tmp/rapids/text/charset_gbk.csv

7.5.10 TRAILING

When “true” IMPEX will ignore a trailing field separator (i.e. where the field separator is immediately

followed by the record terminator character) on each line of a file being imported and will append a

trailing separator to each line of a file being exported.

rapids > select * from ('node://db1/text/header.csv' WITH HEADER);

id name dob

-- ---- ---

1 Jim Smith 2004-04-01

1 row(s) returned (0.06 sec)

1,今天天气很暖和上周六下午温度升至9度。太阳很明亮

rapids > select * from ('node://db1/text/charset_gbk.csv' WITH

CHARSET='GBK');

COL1 COL2

1

1 row(s) returned (0.14 sec)

https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html

RapidsDB SQL Syntax Guide Page 94 © Borrui Data Technology Co. Ltd 2022

When “false” a trailing field separator will indicate a null value for the last column of the record being

imported. For export no trailing field separator will be written out.

Example 1:

This example shows how the trailing delimiter will be ignored:

File: /var/tmp/rapids/text/trailing.csv

Example 2:

This example uses the same data file as example 1, but this time the “TRAILING” property is not set and

so the trailing delimiter will be included in the import operation resulting in a null value for the final

field:

7.6 IMPORT References
The user specifies the location and formatting information for the data to be imported using an Import

Reference:

The table below describes each option:

1,field 2,field 3,

rapids > select * from ('node://db1/text/trailing.csv' WITH TRAILING);

COL1 COL2 COL3

---- ---- ----

1 field 2 field 3

1 row(s) returned (0.05 sec)

rapids > select * from ('node://db1/text/trailing.csv');

COL1 COL2 COL3 COL4

---- ---- ---- ----

1 field 2 field 3 NULL

1 row(s) returned (0.05 sec)

RapidsDB SQL Syntax Guide Page 95 © Borrui Data Technology Co. Ltd 2022

Option Required? Default Description

connectorName No IMPORT The name of an existing IMPEX Connector.

FILE No FILE Indicates that the name specified by the quotedUrl
(see below) refers to a file to be imported.

This is the default for non-bulk IMPORT/EXPORT
operations

FILES No FILES Used for bulk import operations (see 7.10).
Indicates that name specified by the quotedUrl (see
below) refers to a folder which contains a set of
files to be imported. The name of each file (minus
any dot suffixes) is the name of the table where the
data from the file will be written.

This is the default for bulk IMPORT/EXPORT
operations

FOLDER No Indicates that the name specified by the quotedUrl
(see below) refers to a folder which contains a set
of files to be imported.

FOLDERS No Used for bulk import operations (see 7.10).
Indicates that name specified by the quotedUrl (see
below) refers to a folder, which contains a set of
sub-folders to be imported. The name of each sub-
folder is the name of the table where the imported
data from the files in the sub-folder will be written.

url see quotedUrl

RapidsDB SQL Syntax Guide Page 96 © Borrui Data Technology Co. Ltd 2022

quotedUrl Yes Specifies the location of the data to be imported
using the following format:
'node://<RDP node>/< path name>'

where
<RDP node> is the RDP node name where the data
to be imported is located

<path name> is the relative path name to the
location of the data (relative to the setting for the
PATH property, see 7.4)

Examples:
With PATH set to the default “/var/tmp/rapids”:
'node://db1/data'
specifies that the data is to be imported from the
directory “/var/tmp/rapids/data” on RapidsDB
node “db1”

For a custom IMPEX Connector with PATH set to
“/”:
'node://db1/data/log1.csv'

 specifies that the data is to be imported from the
file “/data/log1.csv” on RapidsDB node “db1”

quotedSpec No See quotedUrl

transformerName No Not supported for this release

properties No Connector-defined properties (as key = value pairs)
for the operation. By convention, explicitly
specified properties override properties of the
same name in the Connector (see 7.4 for the list
of Properties).

Below are some examples of import references:

• 'node://db1/data/table1.csv'

As no Connector name is specified, this import reference is for the default import Connector

named “IMPORT” (see 3.9). The file name specified, “data/table1.csv” is relative to the PATH

Property for the Connector, which for the “IMPORT” Connector is “/var/tmp/rapids/”(unless the

PATH Property for the “IMPORT” Connector is changed – see 3.9.3), and so the fully qualified

path name is “/var/tmp/rapids/data/table1.csv” on RapidsDB cluster node “db1”.

• CSV:: 'node://db1/data/table1.csv' WITH DELIMITER='|'

RapidsDB SQL Syntax Guide Page 97 © Borrui Data Technology Co. Ltd 2022

Specifies that the IMPEX Connector named “CSV” should be used and so the file name

“data/table1.csv” will be relative to the PATH Property for the “CSV” Connector. For example if

the “CSV” has Connector has the PATH Property set to '/' (root directory), then the specified file

name would get resolved as “/data/table1.csv”. The field delimiter is set to the pipe character

'|'.

• FOLDER 'node://db1/data/table1' WITH DELIMITER='|', HEADER

Using the default “IMPORT” Connector, the path for the folder “data/table1” would get resolved

to “/var/tmp/rapids/data/table1” on RapidsDB cluster node “db1”. The field delimiter would be

set to the pipe character and the HEADER option is set to indicate that the data file has a header

record

• FOLDERS CSV:: 'node://db1/data/tpch'

For a bulk import, specifies that the IMPEX Connector named “CSV” should be used and so the

folder name “data/tpch” will be relative to the PATH Property for the “CSV” Connector. For

example if the “CSV” Connector has the PATH Property set to '/' (root directory), then the

specified folder name would get resolved as “/data/tpch”.

RapidsDB SQL Syntax Guide Page 98 © Borrui Data Technology Co. Ltd 2022

7.7 EXPORT References
The user specifies the location and formatting information for the data to be exported using an Export

Reference:

The table below describes each option:

Option Required? Default Description

connectorName No EXPORT The name of an existing IMPEX Connector

FILE No FILE Indicates that the name specified by the quotedUrl
(see below) refers to a file where the data for the
table to be exported will be written.

FILES No FILES Used for bulk export operations (see 3.12).
Indicates that name specified by the quotedUrl (see
below) refers to a folder which will contain the files
for the set of tables being exported.

FOLDER No Indicates that the name specified by the quotedUrl
(see below) refers to a folder where a file will be
created that will store the data from the table
being exported.

FOLDERS No Used for bulk export operations (see 3.12).
Indicates that name specified by the quotedUrl (see
below) refers to a folder where the sub-folders for
the exported tables will be created (if needed)
using the table name for the sub-folder name.
Each sub-folder will then have a file created in it
that will store the data from the table being
exported

url No See quotedUrl below

quotedUrl Yes Specifies the location for the exported data using
the following format:
'node://<RDP node>/< path name>'

where
<RDP node> is the RDP node name where the data
to be imported is located

<path name> is the relative path name to the
location of the data (relative to the setting for the
PATH property, see 7.4)

With PATH set to the default “/var/tmp/rapids”:

RapidsDB SQL Syntax Guide Page 99 © Borrui Data Technology Co. Ltd 2022

 'node://db1/data'
specifies that the data is to be exported to the
directory “/var/tmp/rapids/data” on RapidsDB
node “db1”

For a custom IMPEX Connector with PATH set to
“/”:
'node://db1/data/log1.csv'
specifies that the data is to be exported to the file
“/data/log1.csv” on RapidsDB node “db1”

quotedSpec No See quotedUrl above

transformerName No Not supported for this release

properties No Connector-defined properties (as key = value pairs)
for the operation. By convention, explicitly
specified properties override properties of the
same name in the Connector (see 7.4 for the list
of Properties).

Below are some examples of export references:

• 'node://db1/data/table1.csv'

As no Connector name is specified, this import reference is for the default export Connector

named “EXPORT” (see 7.8). The file name specified, “data/table1.csv” is relative to the PATH

Property for the Connector, which for the “EXPORT” Connector is “/var/tmp/rapids/”(unless the

PATH Property for the “IMPORT” Connector is changed – see 7.8.3), and so the fully qualified

path name is “/var/tmp/rapids/data/table1.csv” on RapidsDB cluster node “db1”.

• CSV:: 'node://db1/data/table1.csv'

Specifies that the IMPEX Connector named “CSV” should be used and so the file name

“data/table1.csv” will be relative to the PATH Property for the “CSV” Connector. For example, if

the “CSV” has Connector has the PATH Property set to '/' (root directory), then the specified file

name would get resolved as “/data/table1.csv”.

• FOLDER 'node://db1/data/table1'

Using the default “EXPORT” Connector, the path for the folder “data/table1” would get resolved

to “/var/tmp/rapids/data/table1” on RapidsDB cluster node “db1”.

• FOLDERS CSV:: 'node://db1/data/tpch_files'

RapidsDB SQL Syntax Guide Page 100 © Borrui Data Technology Co. Ltd 2022

For a bulk export, specifies that the IMPEX Connector named “CSV” should be used and so the

folder name “data/tpch” will be relative to the PATH Property for the “CSV” Connector. For

example, if the “CSV” has Connector has the PATH Property set to '/' (root directory), then the

specified folder name would get resolved as “/data/tpch”.

7.8 Default IMPORT and EXPORT Connectors

7.8.1 Usage

RapidsDB comes with two built-in Connectors named “IMPORT” and “EXPORT”, that are used when an

import reference (see 7.6) or an export reference (see 7.7) does not specify a Connector name. For

example, 'node://db1/data/table1.csv'.

7.8.2 Default Properties

By default, the “IMPORT” and “EXPORT” Connectors have the following IMPEX Connector Properties

(see 7.4):

Key: Value

FORMAT 'CSV'

PATH '/var/tmp/rapids'

ERROR_PATH '/var/tmp/rapids_errors'

ERROR_LIMIT 10
BACKUP false

CHARSET 'UTF-8'

DELIMITER ','

ENCLOSED_BY '"'

ESCAPE_CHAR '\'

FILTER '*.*'

GUESS false

HEADER false

TERMINATOR '\n'

TRAILING false

7.8.3 Changing the IMPEX Properties for the “IMPORT” and “EXPORT” Connectors

The user can change any of the properties for the “IMPORT” or “EXPORT” Connectors by dropping the

Connector and then recreating the Connector with the same name.

NOTE: If the “IMPORT” or “EXPORT” Connector is dropped, it must be recreated with the same name

because when doing an import or export operation, RapidsDB will attempt to use a Connector named

“IMPORT” when an import reference (see 11.6) does not specify a Connector name, and similarly, the

system will attempt to use a Connector named “EXPORT” when an export reference (see 11.7) does

not specify a Connector name. If the system cannot find the relevant Connector then the import or

export operation will fail.

RapidsDB SQL Syntax Guide Page 101 © Borrui Data Technology Co. Ltd 2022

One of the most common Properties to change would be the “PATH” property, to set an alternate

default root path name. For example, if all data files will come from the folder “/data” then the default

IMPORT Connector could be changed as shown below:

The following import examples assume that the default “IMPORT” Connector was not reconfigured, and

that an IMPEX Connector named “CSV” was created with the “PATH” Property set to the root directory

(“/”):

This command would result in data being read from the file “table1.csv” in the directory

“/var/tmp/rapids/data” on RapidsDB node “db1”using the default “IMPORT” Connector.

This command would select the data for the first two fields from the file “table1.csv” using the

Connector named “CSV” where the file “table1.csv” resides on the RapidsDB cluster node “db1” in

the directory “/data” (because PATH='/'), where the “name” field is the string 'BorayData'.

The following export examples assume that the default “EXPORT” Connector was not reconfigured:

This command would append the contents of the table named “table1” to the file “table1.csv” using

the default EXPORT Connector where the file “table1.csv” resides in the directory

“/var/tmp/rapids/data” on the RapidsDB cluster node “db1” and where the delimiter is ','.

In this example the EXPORT reference specifies the Connector name “CSV”, and so the default

“EXPORT” Connector would not be used.

7.9 IMPORT using SELECT and INSERT

7.9.1 IMPORT Table Expressions

A table expression has now been extended to also include an import reference:

rapids > drop connector import;

0 row(s) returned (0.13 sec)

rapids > create connector import type impex with PATH='/data';

0 row(s) returned (2.37 sec)

rapids > create connector csv type impex with PATH='/data';

0 row(s) returned (2.09 sec)

SELECT * FROM ('node://db1/data/table1.csv');

SELECT id, name FROM (CSV:: 'node://db1/data/table1.csv') AS t(id integer, name varchar) WHERE

t.name='BorayData';

SELECT * FROM table1 TO 'node://db1/data/table1.csv';

SELECT * FROM table1 TO CSV:: 'node://db1/data/table1.csv';

RapidsDB SQL Syntax Guide Page 102 © Borrui Data Technology Co. Ltd 2022

This means that an import reference (see 7.6) can now appear anywhere in a SELECT or INSERT

statement where a regular table reference can appear, and it also means that the user can provide an

alias name for the import reference, and can also specify a subset of the columns (fields) to be

imported. For example:

SELECT * FROM ('node://db1/data/table1.csv');

The hilited text above is an import reference which replaces the usual table reference.

Section 7.9.2 provides examples of using an import reference with SELECT and INSERT statements.

7.9.2 IMPORT using a SELECT statement

7.9.2.1 Overview

The user can import the data as part of a regular SELECT statement, where the usual table reference is

replaced with an import reference. In the following examples the hilited text is the import reference.

Example 1:

This command would result in data being read from the file “table1.csv” in directory

“var/tmp/rapids/data” (the default PATH) on RapidsDB node “db1”using the default “IMPORT”

IMPEX Connector (see 7.8).

Example 2:

This command would select the data for the first two fields from the file “table1.csv” using the

default IMPEX Connector (see 7.8) where the file “table1.csv” resides on the RapidsDB cluster node

“db1” in the directory “/data” (because PATH='/'), where the field delimiter is the character '|', with

the column names “id” and “name” being used for the first two fields and where the “name” field is

the string 'Jones'.

Example 3:

This command would select all of the data from the files in the folder “table1” using the IMPEX

Connector named “CSV” where the folder “table1” resides on the RapidsDB cluster node “db1” in

the directory “/data” (because PATH='/' for the “CSV” IMPEX Connector), and where the field

SELECT * FROM (FILE 'node://db1/data/table1.csv');

SELECT id, name FROM (FILE 'node://db1/data/table1.csv' WITH PATH='/') AS t(id integer, name

varchar) WHERE t.name='Jones';

SELECT * FROM (CSV:: FOLDER 'node://db1/data/table1');

RapidsDB SQL Syntax Guide Page 103 © Borrui Data Technology Co. Ltd 2022

delimiter is the character '|'. The column headings would be the usual default column headings for

a result set, which are “COL1”, “COL2” … etc.

See sections 7.9.2.10 and 7.9.2.11 for more detailed examples using SELECT statements.

7.9.2.2 Column Naming Using Default Column Names

If there are no column names associated with the input data (see the following sections for assigning

column names), then the IMPEX Connector will use the default column names used by the RapidsDB

Execution Engine which are “COL1”, “COL2”, etc.

Example:

7.9.2.3 Column Naming Using AS clause

The user can also specify the column names to be associated with each of the input fields using the “AS

<tableAlias><(<columnAliases>)” clause as shown in the example below:

7.9.2.4 Column Naming Using HEADER option

It is common with csv files for the first record of the file to be a header record that contains a list of the

column names. The IMPEX Connector allows this by setting the “HEADER” option to true. For example:

rapids > SELECT * FROM ('node://db1/SFSMALL/region.csv') LIMIT 1;

COL1 COL2 COL3

---- ---- ----

1 UNITED STATES adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

1 row(s) returned (0.06 sec)

rapids > SELECT * FROM ('node://db1/SFSMALL/region.csv') AS (r_regionkey ,r_name

,r_comment) LIMIT 1;

R_REGIONKEY R_NAME R_COMMENT

----------- ------ ---------

1 UNITED STATES adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

1 row(s) returned (0.05 sec)

rapids > SELECT * FROM ('node://db1/SFSMALL/regionPipe.csv' WITH DELIMITER='|',

HEADER) LIMIT 1;

R_REGIONKEY R_NAME R_COMMENT

----------- ------ ---------

1 UNITED STATES adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

1 row(s) returned (0.05 sec)

RapidsDB SQL Syntax Guide Page 104 © Borrui Data Technology Co. Ltd 2022

7.9.2.5 Column Data Typing Using GUESS Property

If no column data types are assigned to the columns (see sections 7.9.2.5, 7.9.2.6 and 7.9.2.8) then the

IMPEX Connector will use the “GUESS” Property (see 7.4) to determine the data types as follows:

1. GUESS=FALSE (default) – the IMPEX Connector will treat all columns where the data type is not

explicitly specified (see 7.9.2.6 and 7.9.2.8 for specifying data types) as polymorphic strings,

which are strings that will be automatically cast into the appropriate data type based on the

expression where the column is referenced in a query. For example,

SELECT * FROM ('node://db1/SFSMALL/region.csv') WHERE COL1>10;

In this example, the first column will be automatically cast to an integer

In the following example, the same field will be left as a string and not cast:

SELECT * FROM ('node://db1/SFSMALL/region.csv') WHERE COL1='10A';

If the column contains values that cannot be cast to the required data type, then an error will be

returned.

2. GUESS=TRUE – for any columns where the data type is not explicitly specified (see 7.9.2.6 and

7.9.2.8 for specifying data types) the IMPEX Connector will examine a sample of the data from

the file and use that sample to determine what is the best data type that fits each column in the

data. If the data is uniform across the entire file, then the IMPEX Connector will generally assign

the correct data type, but if the data is not uniform then the IMPEX Connector could assign the

wrong data type which could result in a data type conversion error when querying the data. For

example, if a field had mostly integer values, but there were a few values that were

alphanumeric, then the IMPEX Connector could assign a data type of INTEGER to the column

because in the data sample that was read to determine the data types, all of the values for that

field were integers. This could result in an error when querying the column associated with that

field. For example, in the query below, the IMPEX Connector assigned a data type of INTEGER to

the column “r_regionkey”, but the query failed when looking for an alphanumeric value:

The CAST function can be used to address this issue:

Example 1:

rapids > SELECT * FROM ('node://db1/SFSMALL/regionPipe.csv' WITH

HEADER,delimiter='|',GUESS) where r_regionkey='4A';

Unexpected Exception:

Line 1 position 90: Unresolved operator or function name: =(FastInteger, LiteralString)

rapids > SELECT * FROM ('node://db1/SFSMALL/regionPipe.csv' WITH

HEADER,delimiter='|',GUESS) where cast(r_regionkey as varchar)='4A';

0 row(s) returned (0.04 sec)

RapidsDB SQL Syntax Guide Page 105 © Borrui Data Technology Co. Ltd 2022

File: /var/tmp/SFSMALL/partsupp.csv:

rapids > SELECT * FROM ('node://db1/SFSMALL/partsupp.csv' WITH GUESS)

LIMIT 1;

COL1 COL2 COL3 COL4 COL5

---- ---- ---- ---- ----

1 1 42 562.15 unsure

1 row(s) returned (0.07 sec)

The following data types will be assigned:

Column Data type
COL1 integer

COL2 integer

COL3 integer

COL4 decimal

COL5 varchar

Example 2:

In this example the data type for the fourth column was specified using the “AS” clause (see 7.9.2.6), and

all other data types will be imputed by the Connector:

The following data types will be assigned:

Column Data type

COL1 integer

COL2 integer

COL3 integer

COL4 float

COL5 varchar

1,1,42,562.15,unsure

1,2,640,974.09,reliable

1,3,720,550.17,dishonest

1,4,644,461.39,weak

…

rapids > SELECT * FROM ('node://db1/SFSMALL/partsupp.csv' WITH GUESS)

AS (COL1,COL2,COL3,COL4 float,COL5) LIMIT 1;

COL1 COL2 COL3 COL4 COL5

---- ---- ---- ---- ----

1 1 42 562.15 unsure

1 row(s) returned (0.05 sec)

RapidsDB SQL Syntax Guide Page 106 © Borrui Data Technology Co. Ltd 2022

7.9.2.6 Column Data Typing Using AS clause

In addition to using the AS clause to name columns, the user can also use the AS clause to specify the

data types to be used for the columns. For example:

The following data types will be assigned:

Column Data type

r_regionkey integer

r_name varchar

r_comment varchar

It is also possible to just specify the data types for some of the columns and let the IMPEX Connector

assign the other data types by setting the “GUESS” Property to TRUE. In the example below, the data

types for two of the columns were specified and the “GUESS” Property was set TRUE so that the Impex

Connector would assign the data types for the other columns:

The following data types will be assigned:

Column Data type

c_custkey integer

c_name varchar

c_address varchar
c_nationkey integer

c_phone integer

c_acctbal decimal

c_mktsegment varchar
c_comment varchar

rapids > SELECT * FROM ('node://db1/SFSMALL/region.csv') AS (r_regionkey integer,

r_name varchar, r_comment varchar) LIMIT 1;

R_REGIONKEY R_NAME R_COMMENT

1 UNITED STATES adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

1 row(s) returned (0.05 sec)

rapids > SELECT * FROM ('node://db1/SFSMALL/customer.csv' WITH GUESS) AS

(c_custkey integer, c_name, c_address, c_nationkey, c_phone, c_acctbal

decimal, c_mktsegment, c_comment) LIMIT 1;

C_CUSTKEY C_NAME C_ADDRESS C_NATIONKEY C_PHONE C_ACCTBAL

C_MKTSEGMENT C_COMMENT

0 Richardson Market

negative

3 111 7994.73

FURNITURE

1 row(s) returned (0.05 sec)

RapidsDB SQL Syntax Guide Page 107 © Borrui Data Technology Co. Ltd 2022

7.9.2.7 Column Skipping/Pruning Using AS Clause

The user can skip columns of the input data using the AS clause by simply omitting the column name

from the list of columns in the input data. For example, the following “AS” clause would include

columns one and two of the input, skip columns three and four, include column five, and then ignore

any remaining columns: “AS(L_ORDERKEY integer, L_PARTKEY integer,,,L_QUANTITY integer)”

Example:

Below is an entire record of data:

rapids > SELECT * FROM ('node://db1/SFSMALL/lineitem.csv') LIKE

moxe.lineitem limit 1;

L_ORDERKEY L_PARTKEY L_SUPPKEY L_LINENUMBER L_QUANTITY

L_EXTENDEDPRICE L_DISCOUNT L_TAX L_RETURNFLAG L_LINESTATUS

L_SHIPDATE L_COMMITDATE L_RECEIPTDATE L_SHIPINSTRUCT L_SHIPMODE

L_COMMENT

462 27 2

0

117

3908.88 419.61 411.43 R P 2010-09-23

2015-05-17 2011-01-03 COLLECT COD RAIL lousy

1 row(s) returned (0.05 sec)

The following statement uses the “AS” clause from above to only select a subset of the input columns:

7.9.2.8 Column Naming and Data Typing Using LIKE clause

An alternative way to assign a schema to a file is to use the “LIKE” clause where the name of an existing

table can be specified which will result in the schema for that table being used for the file being

imported. For example:

rapids > SELECT * FROM ('node://db1/SFSMALL/lineitem.csv') AS(L_ORDERKEY

integer, L_PARTKEY integer,,,L_QUANTITY integer) limit 1;

L_ORDERKEY L_PARTKEY L_QUANTITY

462 27 117

1 row(s) returned (0.04 sec)

rapids > SELECT * FROM ('node://db1/SFSMALL/region.csv') LIKE moxe.region LIMIT 1;

RapidsDB SQL Syntax Guide Page 108 © Borrui Data Technology Co. Ltd 2022

7.9.2.9 RAW Data Format

In situations where a data file contains data that is completely unknown, such as where the field

delimiter is not known, the user can use the “RAW” format option to import the data as a single

VARCHAR column. The data can then be viewed and further processing can then be done based on the

actual data. This is format is also useful for fetching miscellaneous text files from locations within the

RapidsDB cluster.

Example:

7.9.2.10 SELECT FROM FILE

The following examples illustrate the use of an IMPEX Connector for importing data directly from a file

to be used in a SELECT statement. As “FILE” is the default option it is not necessary to specify that

option when referencing a file.

Example 1:

Select from the file “text/lead_trail_blanks.csv” which is in the folder “/var/tmp/rapids”.

Below is the contents of the file “lead_trail_blanks.csv”:

R_REGIONKEY R_NAME R_COMMENT

1 UNITED STATES adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

1 row(s) returned (0.05 sec)

[rapids@db1 text]$ cat /var/tmp/rapids/text/lead_trail_blanks.csv

rapids > SELECT * FROM ('node://db1/SFSMALL/region.csv' WITH FORMAT='RAW');

RAW

1,UNITED STATES,adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

2,NORTH AMERICA,aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd

3,EUROPE,dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds

4,SOUTH AMERICA,csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda

5,ASIA,i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

5 row(s) returned (0.04 sec)

rapids > SELECT * FROM ('node://db1/var/log/dmesg' WITH

PATH='/',FORMAT='RAW') LIMIT 2;

RAW

[0.000000] Initializing cgroup subsys cpuset

[0.000000] Initializing cgroup subsys cpu

2 row(s) returned (0.04 sec)

RapidsDB SQL Syntax Guide Page 109 © Borrui Data Technology Co. Ltd 2022

The SELECT command below selected all of the data from the file “lead_trail_blanks.csv” using the

default “IMPORT” Connector where the file “lead_trail_blanks.csv” resides on the RapidsDB cluster node

“db1” in the folder “/var/tmp/rapids/text”, and where the field delimiter is the character ',' (this is the

default for “IMPORT” Connector). The column headings would be the usual default column headings

for a result set, which are “COL1”, and “COL2”.

Example 2:

Selecting from a file where the delimiter is the pipe character ('|') and the file includes a header record

with the column names to use.

Below is the content of the file:

This command below selected all of the data from the file “regionPipe.csv” using the default “IMPORT”

Connector, where the file “regionPipe.csv” resides on the RapidsDB cluster node “db1” in the folder

1, 4 leading blanks,3 trailing blanks ,1

2,A2345678901234567890,A1234567890123456789,2

3," 4 leading blanks","3 trailing blanks ",3

rapids > select * from ('node://db1/text/lead_trail_blanks.csv');

COL1 COL2

---- ----

1 4 leading blanks

2 A2345678901234567890

3 4 leading blanks

COL3

3 trailing blanks

A1234567890123456789

3 trailing blanks

COL4

1

2

3

3 row(s) returned (0.07 sec)

rapids > select char_length(col3) from

('node://db1/text/lead_trail_blanks.csv');

[1]

20

20

20

3 row(s) returned (0.06 sec)

[rapids@db1 rapids]$ cat /var/tmp/rapids/SFSMALL/regionPipe.csv

R_REGIONKEY|R_NAME|R_COMMENT

1|UNITED STATES|adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

2|NORTH AMERICA|aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd

3|EUROPE|dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds

4|SOUTH AMERICA|csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda

5|ASIA|i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

RapidsDB SQL Syntax Guide Page 110 © Borrui Data Technology Co. Ltd 2022

rapids > SELECT * FROM ('node://db1/SFSMALL/regionPipe.csv' WITH

HEADER,delimiter='|');

R_REGIONKEY R_NAME R_COMMENT

1 UNITED STATES adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

5 row(s) returned (0.05 sec)

“/var/tmp/rapids/SFMALL”, and where the field delimiter is the character '|'. The file includes a header

record which has the column names to use.

2 NORTH AMERICA aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd

3 EUROPE dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds

4 SOUTH AMERICA csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda

5 ASIA i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

5 row(s) returned (0.05 sec)

Example 3:

This example shows the use of a custom IMPEX Connector named “CSV_HEADER” which has the default

delimiter set to the pipe character, and with HEADER set true:

rapids > SELECT * FROM (csv_header:: 'node://db1/SFSMALL/regionPipe.csv');

R_REGIONKEY R_NAME R_COMMENT

1

UNITED STATES

adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

2 NORTH AMERICA aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd

3 EUROPE dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds

4 SOUTH AMERICA csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda

5 ASIA i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

Example 4:

rapids > CREATE CONNECTOR CSV_HEADER TYPE IMPEX WITH DELIMITER='|', HEADER;

0 row(s) returned (2.21 sec)

RapidsDB SQL Syntax Guide Page 111 © Borrui Data Technology Co. Ltd 2022

rapids > SELECT * FROM (FILE 'node://db1/SFSMALL/customer.csv') AS IMPORTED

(c_custkey INTEGER, c_name VARCHAR, c_address VARCHAR, c_nationkey INTEGER,

c_phone VARCHAR, c_acctbal DECIMAL, c_mktsegment VARCHAR, c_comment

VARCHAR) WHERE c_acctbal > 3000 and c_nationkey=22 AND EXISTS (SELECT * FROM

vip_customer WHERE vip_customer.c_custkey = IMPORTED.c_custkey) ;

C_CUSTKEY C_NAME C_ADDRESS C_NATIONKEY C_PHONE C_ACCTBAL

C_MKTSEGMENT C_COMMENT [9]

This example shows data filtering by using a predicate (“r_regionkey=4”) on the input data, and

illustrates the use of the “AS” clause for defining the column names.

Example 5:

This example illustrates the use of a complex query to filter the data, where the query includes both

predicates on the input data along with a join to another MOXE table:

20 Egerton

Main 22 111 3815.45

AUTOMOBILE

28

satisfied

Stringer Mission

1
22

111

8516.37

FURNITURE

61

dissatisfied

Riley Turk

1
22

111

6320.39

MACHINERY angry 1

3 row(s) returned (0.18 sec)

Example 6:

This example illustrates the use of the LIKE clause to provide the column names and column data types

for the input data. In this example, the table definition for the table “moxe.customer” is being used:

rapids > SELECT * FROM ('node://db1/SFSMALL/region.csv') AS

region(r_regionkey integer, r_name varchar) WHERE r_regionkey=4;

R_REGIONKEY R_NAME

4 SOUTH AMERICA

1 row(s) returned (0.10 sec)

rapids > SELECT * FROM ('node://db1/SFSMALL/customer.csv') AS IMPORTED LIKE

moxe.customer WHERE IMPORTED.c_acctbal > 3000 and c_nationkey=22 AND EXISTS

(SELECT * FROM vip_customer WHERE vip_customer.c_custkey =

IMPORTED.c_custkey) ;

C_CUSTKEY C_NAME C_ADDRESS C_NATIONKEY C_PHONE C_ACCTBAL

C_MKTSEGMENT C_COMMENT [9]

20 Egerton Main 22 111 3815.45

AUTOMOBILE satisfied 1

RapidsDB SQL Syntax Guide Page 112 © Borrui Data Technology Co. Ltd 2022

NOTE:

When filtering data using predicates, it is highly recommended that the AS clause includes the data

types for all columns as shown in examples 3, and 4 above or the LIKE clause is used to provide the

column definitions from an existing table as shown in example 5 above.

7.9.2.11 SELECT FROM FOLDER

The following examples illustrate the use of an IMPEX Connector for importing data directly from a

folder to be used in a SELECT statement. The files to be accessed from the folder are controlled by the

“FILTER” property, which by default is set to '*.*' (to read all files).

Example 1:

This example shows reading all of the files from a folder:

Folder /var/tmp/rapids/tpch_small/region:

Example 2:

In this example a “FILTER” option is used to only import files ending in “.csv”. The folder for the example

below includes two “.csv” files which will get loaded and one file named “junk” that will be ignored:

Folder /var/tmp/rapids/SFSMALL/region:

28 Stringer Mission 22 111 8516.37

FURNITURE dissatisfied 1

61 Riley

angry

Turk 22 111 6320.39

MACHINERY 1

3 row(s) returned (0.18 sec)

[rapids@db1 region]$ ls /var/tmp/rapids/tpch_small/region

region.csv

rapids > SELECT * FROM (FOLDER 'node://db1/tpch_small/region');

COL1 COL2 COL3

---- ---- ----

1 UNITED STATES adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

2 NORTH AMERICA aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd

3 EUROPE dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds

4 SOUTH AMERICA csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda

5 ASIA i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

5 row(s) returned (0.49 sec)

[rapids@db1 region]$ ls /var/tmp/rapids/SFSMALL/region

junk region1.csv region2.csv

RapidsDB SQL Syntax Guide Page 113 © Borrui Data Technology Co. Ltd 2022

rapids > SELECT * FROM (csv_header:: FOLDER 'node://db1/SFSMALL/regionPipe');

R_REGIONKEY R_NAME R_COMMENT

----------- ------ ---------

1 UNITED STATES adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

Example 3:

This example shows the use of a custom Connector named “CSV_HEADER” which has the “HEADER”

Property set true and the delimiter character set to the pipe character:

2 NORTH AMERICA aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd

3 EUROPE dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds

4 SOUTH AMERICA csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda

5 ASIA i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

5 row(s) returned (0.08 sec)

Example 4:

This example illustrates the use of a predicate to filter the data, and also includes the “AS” clause to

specify the column names and data types:

Example 5:

This example is the same as the previous example except a “LIKE” clause is used in place of the “AS”

clause to specify the column names and data types:

rapids > SELECT * FROM (FOLDER 'node://db1/SFSMALL/region' WITH

FILTER='*.csv');

COL1 COL2 COL3

---- ---- ----

1 UNITED STATES adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

2 NORTH AMERICA aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd

3 EUROPE dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds

4 SOUTH AMERICA csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda

5 ASIA i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

5 row(s) returned (0.05 sec)

rapids > SELECT * FROM (FOLDER 'node://db1/SFSMALL/region' WITH

FILTER='*.csv') AS region(r_regionkey integer, r_name varchar) WHERE

r_regionkey=4;

R_REGIONKEY R_NAME

4 SOUTH AMERICA

1 row(s) returned (0.07 sec)

RapidsDB SQL Syntax Guide Page 114 © Borrui Data Technology Co. Ltd 2022

NOTE:

When filtering data using predicates, it is highly recommended that the AS clause includes the data

types for all columns in the AS clause as shown in example 2 above or includes the LIKE clause as shown

in example 4 above.

7.9.2.12 INSERT … SELECT

When doing an INSERT … SELECT, the data types the IMPEX Connector will use when reading the data

associated with any of the files specified in the SELECT statement will be controlled by the column data

types assigned to that file using either the “AS” clause (see 7.10.2.6) or the “LIKE” clause (see 7.10.2.8).

If the data types are not specified then, by default, the IMPEX Connector will

Example 1:

This example shows an insert into the MOXE table named “region” of the data from all of the files

ending in “.csv” in the folder “region” using the default “IMPORT” Connector where the folder “region”

resides on the RapidsDB cluster node “db1” in the folder “/var/tmp/rapids/SFSMALL”.

Example 2:

This example demonstrates selecting a subset of the fields from the input file by using the “AS” clause to

name the fields from the input file that are to be imported, and also the use of a predicate to filter the

rapids > SELECT * FROM (FOLDER 'node://db1/SFSMALL/region' WITH

FILTER='*.csv') AS region LIKE moxe.region WHERE r_regionkey=4;

R_REGIONKEY R_NAME R_COMMENT

4 SOUTH AMERICA csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc

asbvda

1 row(s) returned (0.09 sec)

rapids > create table moxe.REGION (

> r_regionkey integer NOT NULL,

> r_name varchar(25),

> r_comment varchar(152)

>);

0 row(s) returned (0.09 sec)

rapids > INSERT INTO moxe.region SELECT * FROM (FOLDER 'node://db1/SFSMALL/region'

WITH FILTER='*.csv');

0 row(s) returned (0.08 sec)

rapids > select * from moxe.region;

R_REGIONKEY R_NAME R_COMMENT

1 UNITED STATES adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

2 NORTH AMERICA aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd

3 EUROPE dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds

4 SOUTH AMERICA csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda

5 ASIA i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

5 row(s) returned (0.05 sec)

RapidsDB SQL Syntax Guide Page 115 © Borrui Data Technology Co. Ltd 2022

data being inserted:

Example 3:

This command also selects a subset of the fields to be inserted and uses a header record in the input file

to name the fields in the input file which can then be used to specify which fields are to be imported:

Example 4:

This is the same as the previous example except this example uses a custom Connector named

“CSV_HEADER” which has the “HEADER” Property set “true” and the “DELIMITER” set to the pipe

character:

rapids > create table moxe.REGION2 (

> r_regionkey integer NOT NULL,

> r_name varchar(25)

>);

0 row(s) returned (0.10 sec)

rapids > INSERT into moxe.region2 SELECT r_regionkey, r_name FROM

('node://db1/SFSMALL/region.csv') AS r(r_regionkey integer, r_name varchar)

WHERE r.r_regionkey<3;

0 row(s) returned (0.08 sec)

rapids > select * from moxe.region2;

R_REGIONKEY R_NAME

1 UNITED STATES

2 NORTH AMERICA

2 row(s) returned (0.05 sec)

rapids > truncate region2;

0 row(s) returned (0.05 sec)

rapids > INSERT into moxe.region2 SELECT r_regionkey, r_name FROM

('node://db1/SFSMALL/regionPipe.csv' WITH DELIMITER='|', HEADER);

0 row(s) returned (0.08 sec)

rapids > select * from region2;

R_REGIONKEY R_NAME

1 UNITED STATES

2 NORTH AMERICA

3 EUROPE

4 SOUTH AMERICA

5 ASIA

5 row(s) returned (0.05 sec)

rapids > truncate region2;

0 row(s) returned (0.05 sec)

rapids > INSERT into moxe.region2 SELECT r_regionkey, r_name FROM

(csv_header::'node://db1/SFSMALL/regionPipe.csv');

0 row(s) returned (0.08 sec)

RapidsDB SQL Syntax Guide Page 116 © Borrui Data Technology Co. Ltd 2022

7.9.2.13 CREATE AS SELECT

The user can create a new table us the CREATE <table> as SELECT … clause, where the SELECT can

include an import reference. The column names and data types will follow the rules specified in

sections 7.10.2.2 to 7.10.2.8.

NOTE:

1. When creating a MOXE table, if the “PARITITION BY” clause is not specified then the table will

get created as a reference (replicated) table, where there will be a full copy of the data on every

node in the RapidsDB cluster where the associated MOXE Connector is running. If the

“PARTITION BY” clause is specified, then there will be one copy of the data distributed across all

of the nodes in the RapidsDB cluster where the associated MOXE Connector is running, and the

data will be partitioned using the column(s) specified in the “PARTITION BY” clause. Refer to

sections 6.2.1 and 6.2.2 for more information on partitioned and reference tables. Examples 3

and 4 below shows the use of the “PARTITION BY” clause.

2. When creating a table managed by any of the Connectors except for MOXE, the “PARTITION

BY” clause is not currently supported, and so the “CREATE TABLE” command will either fail with

an error or the “PARTITION BY” clause will get ignored and the table will get created as a non-

partitioned table.

Example 1:

This command creates a replicated MOXE table named “customer1” with the data from the file

“customer.csv”. The column names are the default column names, “COL1”, “COL2” etc and the data

types would all be set to VARCHAR because the “GUESS” property (see 11.4) is set false by default.

rapids > select * from region2;

R_REGIONKEY R_NAME

1 UNITED STATES

2 NORTH AMERICA

3 EUROPE

4 SOUTH AMERICA

5 ASIA

5 row(s) returned (0.05 sec)

rapids > create table moxe.customer1 as select * from

('node://db1/SFSMALL/customer.csv');

0 row(s) returned (0.26 sec)

rapids > describe table customer1;

TABLE_NAME COLUMN_NAME DATA_TYPE ORDINAL IS_PARTITION_KEY

IS_NULLABLE PRECISION SCALE COMMENT PROPERTIES

RapidsDB SQL Syntax Guide Page 117 © Borrui Data Technology Co. Ltd 2022

8 row(s) returned (0.50 sec)

CUSTOMER1

true

COL1

NULL

NULL

VARCHAR

NULL

NULL

0

false

CUSTOMER1

true

COL2

NULL

NULL

VARCHAR

NULL

NULL

1

false

CUSTOMER1

true

COL3

NULL

NULL

VARCHAR

NULL

NULL

2

false

CUSTOMER1

true

COL4

NULL

NULL

VARCHAR

NULL

NULL

3

false

CUSTOMER1

true

COL5

NULL

NULL

VARCHAR

NULL

NULL

4

false

CUSTOMER1

true

COL6

NULL

NULL

VARCHAR

NULL

NULL

5

false

CUSTOMER1

true

COL7

NULL

NULL

VARCHAR

NULL

NULL

6

false

CUSTOMER1

true

COL8

NULL

NULL

VARCHAR

NULL

NULL

7

false

Example 2:

This example creates a replicated MOXE table named “customer1” with the data from the file

“customer.csv”. The column names are the default column names, “COL1”, “COL2” etc and the data

types are derived by looking at a sample of the data because the “GUESS” property (see 7.4) is set to

true.

rapids > create table moxe.customer1 as select * from

('node://db1/SFSMALL/customer.csv' WITH GUESS);

0 row(s) returned (0.27 sec)

rapids > describe table customer1;

TABLE_NAME COLUMN_NAME DATA_TYPE ORDINAL IS_PARTITION_KEY

IS_NULLABLE PRECISION SCALE COMMENT PROPERTIES

CUSTOMER1 COL1 INTEGER

0 false

true 64 NULL NULL NULL

CUSTOMER1 COL2 VARCHAR 1 false

true NULL NULL NULL NULL

RapidsDB SQL Syntax Guide Page 118 © Borrui Data Technology Co. Ltd 2022

CUSTOMER1 COL3 VARCHAR 2 false

true NULL NULL NULL NULL

CUSTOMER1 COL4 INTEGER 3 false

true 64 NULL NULL NULL

CUSTOMER1 COL5 INTEGER 4 false

true 64 NULL NULL NULL

CUSTOMER1 COL6 DECIMAL 5 false

true 17 2 NULL NULL

CUSTOMER1 COL7 VARCHAR 6 false

true NULL NULL NULL NULL

CUSTOMER1 COL8 VARCHAR 7 false

true NULL NULL NULL NULL

8 row(s) returned (0.31 sec)

Example 3:

This example creates a partitioned MOXE table using the “PARTITION BY” clause and also shows the use

of the “AS” clause to specify the column names and data types to be used in the new table:

rapids > CREATE TABLE moxe.special_customer AS SELECT * FROM

('node://db1/SFSMALL/customer.csv') AS IMPORTED (c_custkey INTEGER, c_name

VARCHAR, c_address VARCHAR, c_nationkey INTEGER, c_phone VARCHAR, c_acctbal

DECIMAL, c_mktsegment VARCHAR, c_comment VARCHAR) PARTITION BY HASH ON

(c_custkey) WHERE c_acctbal > 0 AND EXISTS (SELECT * FROM vip_customer WHERE

vip_customer.c_custkey = IMPORTED.c_custkey) ;

0 row(s) returned (0.41 sec)

rapids > describe table special_customer;

TABLE_NAME COLUMN_NAME DATA_TYPE ORDINAL IS_PARTITION_KEY

IS_NULLABLE PRECISION SCALE COMMENT PROPERTIES

SPECIAL_CUSTOMER C_CUSTKEY INTEGER 0 false

true 64 NULL NULL NULL

SPECIAL_CUSTOMER C_NAME VARCHAR 1 false

true NULL NULL NULL NULL

SPECIAL_CUSTOMER C_ADDRESS VARCHAR 2 false

true NULL NULL NULL NULL

SPECIAL_CUSTOMER C_NATIONKEY INTEGER 3 false

true 64 NULL NULL NULL

SPECIAL_CUSTOMER C_PHONE VARCHAR 4 false

true NULL NULL NULL NULL

SPECIAL_CUSTOMER C_ACCTBAL DECIMAL 5 false

true 17 2 NULL NULL

SPECIAL_CUSTOMER C_MKTSEGMENT VARCHAR 6 false

true NULL NULL NULL NULL

SPECIAL_CUSTOMER C_COMMENT VARCHAR 7 false

true NULL NULL NULL NULL

RapidsDB SQL Syntax Guide Page 119 © Borrui Data Technology Co. Ltd 2022

7.10 Bulk IMPORT

A new IMPORT statement is now supported for directly importing multiple tables with a single request:

bulkReference:

The table below describes each option:

Option Required? Default? Description

IF EXISTS No No Import only items whose name matches an existing
table in the catalog and/or schema specified by the
bulkReference (see below)

IF NOT EXISTS No No Import only items whose name does not match an
existing table in the catalog and/or schema specified by
the bulkReference (see below)

APPEND No Yes Append the imported data to an existing table, if any.

REPLACE No No Truncate an existing table before new data is imported

bulkReference Yes No Specifies the three-level (catalog, schema, table)
naming for the target table(s) into which data will be
imported. Wildcards may be specified (using an asterisk
'*') for any of the name components. If the catalog
name and/or schema name are omitted, the
CURRENT_CATALOG and CURRENT_SCHEMA session
settings are used, if set. The Connector may support
properties (see below) which impact how the bulk
reference is interpreted.

NOTE:
All of the tables to be imported into must be managed
by the same Connector, if that is not the case then an
error will be returned (see Example 4 in
section 7.10.2 below for more details). To ensure

8 row(s) returned (0.31 sec)

rapids > select count(*) from special_customer;

[1]

75

1 row(s) returned (0.08 sec)

RapidsDB SQL Syntax Guide Page 120 © Borrui Data Technology Co. Ltd 2022

 that this does not happen it is recommended that the
schema name is always specified and if this is not
unique, then the catalog name should also be included.

importReference Yes No An Import Reference (see 7.7) identifying the data to
be imported

NOTE:

1. When doing a bulk import, if the target table does not exist then the table will get created by the

Connector associated with the bulkReference (see above) using the following rules:

a. The column names will be the default column names described in section 7.10.2.2

b. The column data types will depend on the setting of the “GUESS” property as described in

section 7.10.2.5. If the “GUESS” Property is set to FALSE, then all of the columns will be

created as VARCHAR columns.

c. The table will get created with defaults for any primary keys or partitioning keys, which

could result in unexpected performance or memory limits issues. For example, a MOXE

Connector will create the table as a Reference table (see 6.2.2) because there is no

partitioning information, and this means that each node in the RapidsDB cluster where the

associated MOXE Connector is running will have a full copy of the imported data, and this

could result in MOXE running out of memory. To avoid any such issues, it is highly

recommended that all target tables in a bulk import are first created with the appropriate

primary and partitioning keys, and then the bulk import executed against the existing

tables. Alternatively, the tables can be imported individually using a CREATE

… AS SELECT statement where the primary and partitioning keys can be specified (see

7.10.2.12).

2. When doing a bulk import, if the target tables already exist, then it is recommended that the

“GUESS” property is set to FALSE so that all data fields are read in as polymorphic strings (see

7.10.2.5) and then automatically cast to the data type for the column in the target table.

7.10.1 Bulk IMPORT Using FILES Option

When doing a bulk import operation the “FILES” option indicates that the path name specified in the

import reference (see 7.6) refers to a folder which contains a set of files to be imported. The name of

each file (minus any dot suffixes) is the name of the table where the data from the file will be written.

The “FILES” option is the default and so it does not need to be specified.

Example 1:

Bulk import a set of files from the folder “/var/tmp/rapids/tpch_small_files” from RapidsDB Cluster

node “db1” using the default “IMPORT” Connector (see 7.8).

Folder /var/tmp/rapids/tpch_small_files:

RapidsDB SQL Syntax Guide Page 121 © Borrui Data Technology Co. Ltd 2022

This command imported all the files from folder “/var/tmp/rapids/tpch_small_files” (“customer.csv”,

“lineitem.csv”, “nation.csv”, etc) creating new tables (see “show table;” output below) of the same

names (minus the “.csv” suffix) in the schema MOXE if they did not already exist and where the column

names for any newly created table were set to “COL1”, “COL2”, etc, and where the data types were

imputed from the data in the files (based on the “GUESS” property being set TRUE (see 7.9.2.5) (see

“describe table” output below). If the tables already existed, the new data would be inserted alongside

the existing data.

rapids > show tables;

CATALOG_NAME SCHEMA_NAME TABLE_NAME

MOXE MOXE CUSTOMER

MOXE MOXE LINEITEM

MOXE MOXE NATION

MOXE MOXE ORDERS

MOXE MOXE PART

MOXE MOXE PARTSUPP

MOXE MOXE REGION

MOXE MOXE SUPPLIER

…

rapids > describe table region;

TABLE_NAME COLUMN_NAME DATA_TYPE

IS_NULLABLE PRECISION SCALE

ORDINAL

IS_PARTITION_KEY

REGION COL1 INTEGER

true 64 NULL

REGION COL2 VARCHAR

true NULL NULL

REGION COL3 VARCHAR

true NULL NULL

3 row(s) returned (0.28 sec)

0

1

2

false

false

false

Finally, the query below shows that the correct number of records were loaded into the table:

[rapids@db1 rapids]$ ls tpch_small_files

customer.csv lineitem.csv nation.csv orders.csv part.csv partsupp.csv

region.csv supplier.csv

rapids > IMPORT MOXE.* FROM 'node://db1/tpch_small_files' WITH GUESS;

0 row(s) returned (12.17 sec)

[rapids@db1 rapids]$ cat tpch_small_files/lineitem.csv | wc -l

3000

RapidsDB SQL Syntax Guide Page 122 © Borrui Data Technology Co. Ltd 2022

Example 2:

This example shows the use of the “IF NOT EXISTS” clause to restrict a bulk import to only those tables

that do not exist.

Bulk import a set of files from the folder “/var/tmp/rapids/tpch_small_files” on RapidsDB Cluster node

“db1”.

Folder /var/tmp/rapids/tpch_small_files:

Drop the existing tables “customer” and “region”, show the existing row count for the “nation” table to

show that the row count does not change after the import, and that only the “customer” and “region”

tables are imported:

rapids > select count(*) from lineitem;

[1]

3000

1 row(s) returned (0.22 sec)

[rapids@db1 rapids]$ ls tpch_small_files

customer.csv lineitem.csv nation.csv orders.csv part.csv partsupp.csv

region.csv supplier.csv

rapids > drop table customer;

0 row(s) returned (0.10 sec)

rapids > drop table region;

0 row(s) returned (0.10 sec)

rapids > show tables;

CATALOG_NAME SCHEMA_NAME TABLE_NAME

MOXE

MOXE

MOXE

MOXE

MOXE

MOXE

…

MOXE

MOXE

MOXE

MOXE

MOXE

MOXE

LINEITEM

NATION

ORDERS

PART

PARTSUPP

SUPPLIER

24 row(s) returned (0.28 sec)

rapids > select count(*) from nation;

[1]

25

RapidsDB SQL Syntax Guide Page 123 © Borrui Data Technology Co. Ltd 2022

IMPORT command with the “IF NOT EXISTS” clause

The “SHOW TABLES” command shows that the “customer” and “region” tables were imported, and the

row count for the “nation” table has not changed, showing that no data was imported into that table:

Example 3:

This example shows importing a set of files which were created using the EXPORT command (see

7.12.2):

Now drop the current tables and then import the files specifying the HEADER and GUESS options:

1 row(s) returned (0.09 sec)

rapids > IMPORT IF NOT EXISTS MOXE.* FROM 'node://db1/tpch_small_files' WITH

GUESS;

0 row(s) returned (0.70 sec)

rapids > show tables;

CATALOG_NAME SCHEMA_NAME TABLE_NAME

MOXE

MOXE

MOXE

MOXE

MOXE

MOXE

MOXE

MOXE

…

MOXE

MOXE

MOXE

MOXE

MOXE

MOXE

MOXE

MOXE

CUSTOMER

LINEITEM

NATION

ORDERS

PART

PARTSUPP

REGION

SUPPLIER

26 row(s) returned (0.27 sec)

rapids > select count(*) from nation;

[1]

25

1 row(s) returned (0.09 sec)

rapids > EXPORT MOXE.* TO 'node://db1/tpch_small_file_with_headers' WITH

HEADER;

0 row(s) returned (8.33 sec)

rapids > drop table moxe.lineitem;

0 row(s) returned (0.19 sec)

rapids > drop table moxe.orders;

0 row(s) returned (0.10 sec)

rapids > drop table moxe.customer;

RapidsDB SQL Syntax Guide Page 124 © Borrui Data Technology Co. Ltd 2022

0 row(s) returned (0.09 sec)

rapids > drop table moxe.supplier;

0 row(s) returned (0.09 sec)

rapids > drop table moxe.part;

0 row(s) returned (0.10 sec)

rapids > drop table moxe.partsupp;

0 row(s) returned (0.11 sec)

rapids > drop table moxe.nation;

0 row(s) returned (0.09 sec)

rapids > drop table moxe.region;

0 row(s) returned (0.09 sec)

rapids > IMPORT MOXE.* FROM 'node://db1/tpch_small_file_with_headers' WITH

HEADER, GUESS;

0 row(s) returned (16.26 sec)

rapids > show tables;

CATALOG_NAME SCHEMA_NAME TABLE_NAME

MOXE MOXE CUSTOMER

MOXE MOXE LINEITEM

MOXE MOXE NATION

MOXE MOXE ORDERS

MOXE MOXE PART

MOXE MOXE PARTSUPP

MOXE MOXE REGION

MOXE MOXE SUPPLIER

…

31 row(s) returned (0.27 sec)

rapids > describe table region;

TABLE_NAME COLUMN_NAME DATA_TYPE

IS_NULLABLE PRECISION SCALE

ORDINAL

IS_PARTITION_KEY

REGION 'R_REGIONKEY' INTEGER 0 false

true 64 NULL

REGION 'R_NAME' VARCHAR 1 false

true NULL NULL

REGION 'R_COMMENT' VARCHAR 2 false

true NULL NULL

3 row(s) returned (0.27 sec)

Example 4:

This example shows that when the tables already exist a bulk import operation will append to the

existing tables.

Current row counts:

rapids > select count(*) from customer;

RapidsDB SQL Syntax Guide Page 125 © Borrui Data Technology Co. Ltd 2022

[1]

75

1 row(s) returned (0.06 sec)

rapids > select count(*) from lineitem;

[1]

3000

1 row(s) returned (0.06 sec)

rapids > select count(*) from nation;

[1]

25

1 row(s) returned (0.06 sec)

rapids > select count(*) from orders;

[1]

750

1 row(s) returned (0.06 sec)

rapids > select count(*) from part;

[1]

100

1 row(s) returned (0.07 sec)

rapids > select count(*) from partsupp;

[1]

400

1 row(s) returned (0.06 sec)

rapids > select count(*) from region;

[1]

5

1 row(s) returned (0.06 sec)

rapids > select count(*) from supplier;

[1]

5

1 row(s) returned (0.05 sec)

RapidsDB SQL Syntax Guide Page 126 © Borrui Data Technology Co. Ltd 2022

In this example the “IF EXISTS” clause is used to only import into those tables that already exist. The

“GUESS” Property is set to FALSE (by default) so that all data will be read as polymorphic strings and

then cast to the data type for each column. The “FILES” option is explicitly stated (although as

mentioned earlier it is not needed because it is the default), and the FILTER option is specified to only

include those files with the suffix “.csv”. The new row counts show that the number of rows in each

table doubled as a result of the bulk import inserting the new data:

rapids > IMPORT IF EXISTS MOXE.* FROM FILES 'node://db1/tpch_small_files'

WITH FILTER='*.csv';

0 row(s) returned (9.94 sec)

rapids > select count(*) from customer;

[1]

150

1 row(s) returned (0.06 sec)

rapids > select count(*) from lineitem;

[1]

6000

1 row(s) returned (0.06 sec)

rapids > select count(*) from nation;

[1]

50

1 row(s) returned (0.06 sec)

rapids > select count(*) from orders;

[1]

1500

1 row(s) returned (0.06 sec)

rapids > select count(*) from part;

[1]

200

1 row(s) returned (0.05 sec)

rapids > select count(*) from partsupp;

[1]

800

1 row(s) returned (0.06 sec)

rapids > select count(*) from region;

[1]

RapidsDB SQL Syntax Guide Page 127 © Borrui Data Technology Co. Ltd 2022

Example 5:

This command demonstrates the use of the “REPLACE” option to replace the existing data in the tables
(by doing a “TRUNCATE” operation before importing the data) with new data.

Below are the current row counts for the tables:

10

1 row(s) returned (0.06 sec)

rapids > select count(*) from supplier;

[1]

10

1 row(s) returned (0.06 sec)

rapids > select count(*) from customer;

[1]

150

1 row(s) returned (0.06 sec)

rapids > select count(*) from lineitem;

[1]

6000

1 row(s) returned (0.06 sec)

rapids > select count(*) from nation;

[1]

50

1 row(s) returned (0.06 sec)

rapids > select count(*) from orders;

[1]

1500

1 row(s) returned (0.06 sec)

rapids > select count(*) from part;

[1]

200

1 row(s) returned (0.05 sec)

rapids > select count(*) from partsupp;

[1]

RapidsDB SQL Syntax Guide Page 128 © Borrui Data Technology Co. Ltd 2022

Note that the table counts below now reflect a single copy of the data:

800

1 row(s) returned (0.06 sec)

rapids > select count(*) from region;

[1]

10

1 row(s) returned (0.06 sec)

rapids > select count(*) from supplier;

[1]

10

1 row(s) returned (0.06 sec)

rapids > IMPORT MOXE.* REPLACE FROM 'node://db1/tpch_small_files';

0 row(s) returned (10.13 sec)

rapids > select count(*) from customer;

[1]

75

1 row(s) returned (0.06 sec)

rapids > select count(*) from lineitem;

[1]

3000

1 row(s) returned (0.06 sec)

rapids > select count(*) from nation;

[1]

25

1 row(s) returned (0.06 sec)

rapids > select count(*) from orders;

[1]

750

1 row(s) returned (0.06 sec)

rapids > select count(*) from part;

[1]

RapidsDB SQL Syntax Guide Page 129 © Borrui Data Technology Co. Ltd 2022

7.10.2 Bulk IMPORT Using FILES Option With FILTER

The FILTER property allows the user to control which files are imported in a wildcard import operation

and, optionally, how table names are created from the names of imported files. The FILTER value is a

character string containing a Java regular expression (a “regex”).

When performing a wildcard import, an IMPEX Connector examines each filename available from the

import source. Only files whose names satisfy the FILTER regex are imported. (For a tutorial on Java

regular expressions, see https://www.oracle.com/technical-resources/articles/java/regex.html)

Example 1:

Bulk import a set of files from the folder “/var/tmp/rapids/tpch_small_files” on RapidsDB Cluster node

“db1”.

Folder /var/tmp/rapids/tpch_small_files:

rapids > show

CATALOG_NAME

tables;

SCHEMA_NAME

TABLE_NAME

RAPIDS

RAPIDS

SYSTEM

SYSTEM

AUTHENTICATORS

AUTHENTICATOR_CONFIG

100

1 row(s) returned (0.06 sec)

rapids > select count(*) from partsupp;

[1]

400

1 row(s) returned (0.06 sec)

rapids > select count(*) from region;

[1]

5

1 row(s) returned (0.06 sec)

rapids > select count(*) from supplier;

[1]

5

1 row(s) returned (0.06 sec)

[rapids@db1 rapids]$ ls tpch_small_files

customer.csv lineitem.csv nation.csv orders.csv part.csv partsupp.csv

region.csv supplier.csv

http://www.oracle.com/technical-resources/articles/java/regex.html)

RapidsDB SQL Syntax Guide Page 130 © Borrui Data Technology Co. Ltd 2022

RAPIDS

RAPIDS

RAPIDS

RAPIDS

RAPIDS

RAPIDS

RAPIDS

RAPIDS

RAPIDS

RAPIDS

RAPIDS

RAPIDS

RAPIDS

RAPIDS

RAPIDS

RAPIDS

SYSTEM

SYSTEM

SYSTEM

SYSTEM

SYSTEM

SYSTEM

SYSTEM

SYSTEM

SYSTEM

SYSTEM

SYSTEM

SYSTEM

SYSTEM

SYSTEM

SYSTEM

SYSTEM

 CATALOGS

COLUMNS

CONNECTORS

FEDERATIONS

INDEXES

NODES

PATTERN_MAPS

QUERIES

QUERY_STATS

SCHEMAS

SESSIONS

TABLES

TABLE_PROVIDERS

USERNAME_MAPS

USERS

USER_CONFIG

18 row(s) returned (0.22 sec)

rapids > IMPORT MOXE.* FROM 'node://db1/tpch_small_files' WITH

FILTER='*.csv',GUESS;

0 row(s) returned (12.17 sec)

This command imported all the files from folder “/var/tmp/rapids/tpch_small_files” with a file suffix of

“.csv” creating new tables (see “show tables;” output below) of the same names (minus the “.csv” suffix)

in the schema MOXE if they did not already exist and where the column names for any newly created

table were set to “COL1”, “COL2”, etc, and where the data types were imputed from the data in the files

(based on the “GUESS” property being set TRUE (see 7.9.2.5) (see “describe table” output below). If the

tables already existed, the new data would be inserted alongside the existing data.

rapids > show

CATALOG_NAME

tables;

SCHEMA_NAME

TABLE_NAME

MOXE MOXE CUSTOMER

MOXE MOXE LINEITEM

MOXE MOXE NATION

MOXE MOXE ORDERS

MOXE MOXE PART

MOXE MOXE PARTSUPP

MOXE MOXE REGION

MOXE MOXE SUPPLIER

RAPIDS

RAPIDS

RAPIDS

RAPIDS

RAPIDS

RAPIDS

RAPIDS

RAPIDS

SYSTEM

SYSTEM

SYSTEM

SYSTEM

SYSTEM

SYSTEM

SYSTEM

SYSTEM

AUTHENTICATORS

AUTHENTICATOR_CONFIG

CATALOGS

COLUMNS

CONNECTORS

FEDERATIONS

INDEXES

NODES

RapidsDB SQL Syntax Guide Page 131 © Borrui Data Technology Co. Ltd 2022

RAPIDS

RAPIDS

RAPIDS

RAPIDS

RAPIDS

RAPIDS

RAPIDS

RAPIDS

RAPIDS

CATALOG_NAME

SYSTEM PATTERN_MAPS

SYSTEM QUERIES

SYSTEM QUERY_STATS

SYSTEM SCHEMAS

SYSTEM SESSIONS

SYSTEM TABLES

SYSTEM TABLE_PROVIDERS

SYSTEM USERNAME_MAPS

SYSTEM USERS

SCHEMA_NAME TABLE_NAME

RAPIDS SYSTEM USER_CONFIG

26 row(s) returned (0.22 sec)

rapids > describe table region;

TABLE_NAME COLUMN_NAME DATA_TYPE ORDINAL IS_PARTITION_KEY

IS_NULLABLE PRECISION SCALE COMMENT PROPERTIES

REGION COL1 INTEGER 0 false

true 64 NULL NULL NULL

REGION COL2 VARCHAR 1 false

true NULL NULL NULL NULL

REGION COL3 VARCHAR 2 false

true NULL NULL NULL NULL

3 row(s) returned (0.20 sec)

Example 2:

Import the file whose name starts with the string “region” (this is the capturing group, see hilited text

below), and create a table of that name. This example uses the same folder as the previous example,

but this time only the “region” table will get imported:

rapids > drop table region;

0 row(s) returned (0.09 sec)

rapids > IMPORT MOXE.* FROM 'node://db1/tpch_small_files' WITH

FILTER='(region).*',GUESS;

0 row(s) returned (0.12 sec)

rapids > select count(*) from region;

[1]

5

1 row(s) returned (0.06 sec)

RapidsDB SQL Syntax Guide Page 132 © Borrui Data Technology Co. Ltd 2022

7.10.3 Bulk IMPORT Using FOLDERS Option

When doing a bulk import operation the “FOLDERS” option indicates that the path name specified in the

import reference (see 7.6) refers to a folder, which contains a set of sub-folders to be imported. The

name of each sub-folder is the name of the table where the imported data from the files in the sub-

folder will be written.

Example 1:

This example shows the use of the FOLDERS option to import the data from a set of sub-folders where

each sub-folder corresponds to a table of the same name.

Folder structure under parent folder /var/tmp/rapids/small_tpch:

The bulk import command below is using the “IF NOT EXISTS” clause to only import those tables that do

not currently exist along with the “FOLDERS” option. As the tables are being created, the “GUESS”

Property is set TRUE so that the IMPEX Connector will assign the data types. In this example only the

“lineitem” table will be imported because all of the other tables already exist:

rapids > show

CATALOG_NAME

tables;

SCHEMA_NAME

TABLE_NAME

MOXE MOXE CUSTOMER

[rapids@db1 rapids]$ ls /var/tmp/rapids/tpch_small/*

/var/tmp/rapids/tpch_small/customer:

customer.csv

/var/tmp/rapids/tpch_small/lineitem:

lineitem.csv

/var/tmp/rapids/tpch_small/nation:

nation.csv

/var/tmp/rapids/tpch_small/orders:

orders.csv

/var/tmp/rapids/tpch_small/part:

part.csv

/var/tmp/rapids/tpch_small/partsupp:

partsupp.csv

/var/tmp/rapids/tpch_small/region:

region.csv

/var/tmp/rapids/tpch_small/supplier:

supplier.csv:

RapidsDB SQL Syntax Guide Page 133 © Borrui Data Technology Co. Ltd 2022

MOXE MOXE NATION

MOXE MOXE ORDERS

MOXE MOXE PART

MOXE MOXE PARTSUPP

MOXE MOXE REGION

MOXE MOXE SUPPLIER

…

25 row(s) returned (0.22 sec)

rapids > select count(*) from customer;

[1]

75

1 row(s) returned (0.06 sec)

rapids > IMPORT IF NOT EXISTS MOXE.* FROM FOLDERS 'node://db1/tpch_small'

WITH GUESS;

0 row(s) returned (10.63 sec)

rapids > show tables;

CATALOG_NAME SCHEMA_NAME TABLE_NAME

MOXE MOXE CUSTOMER

MOXE MOXE LINEITEM

MOXE MOXE NATION

MOXE MOXE ORDERS

MOXE MOXE PART

MOXE MOXE PARTSUPP

MOXE MOXE REGION

MOXE MOXE SUPPLIER

…

25 row(s) returned (0.23 sec)

rapids > select count(*) from lineitem;

[1]

3000

1 row(s) returned (0.06 sec)

rapids > select count(*) from customer;

[1]

75

1 row(s) returned (0.06 sec)

Example 2:

RapidsDB SQL Syntax Guide Page 134 © Borrui Data Technology Co. Ltd 2022

This example shows the use of the “REPLACE” option, where the tables being imported will first be

truncated and then the data inserted.

Current row count for “lineitem” table:

Import command with “REPLACE” option specified. The “GUESS” Property is set to FALSE (by default) so

that all data will be read as polymorphic strings and then cast to the data type for each column:

Current row count showing that only one copy of the data is in the table:

Example 3:

This example shows a bulk import where the input files include header records with the column names.

Below is the file “region.csv” showing the header row:

rapids > select count(*) from lineitem;

[1]

3000

1 row(s) returned (0.06 sec)

rapids > IMPORT MOXE.* REPLACE FROM FOLDERS 'node://db1/tpch_small' WITH

GUESS=FALSE;

0 row(s) returned (10.03 sec)

rapids > select count(*) from lineitem;

[1]

3000

1 row(s) returned (0.06 sec)

rapids@db1:/var/tmp/rapids$ ls tpch_small_folders_with_headers/*/*

tpch_small_folders_with_headers/CUSTOMER/customer.csv

tpch_small_folders_with_headers/PART/part.csv

tpch_small_folders_with_headers/LINEITEM/lineitem.csv

tpch_small_folders_with_headers/PARTSUPP/partsupp.csv

tpch_small_folders_with_headers/NATION/nation.csv

tpch_small_folders_with_headers/REGION/region.csv

tpch_small_folders_with_headers/ORDERS/orders.csv

tpch_small_folders_with_headers/SUPPLIER/supplier.csv

[rapids@db1 tpch_small_folders_with_headers]$ cat region/REGION.csv

R_REGIONKEY,R_NAME,R_COMMENT

1,UNITED STATES,adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

RapidsDB SQL Syntax Guide Page 135 © Borrui Data Technology Co. Ltd 2022

Below is the bulk import command with the “FOLDERS” option set, and the “HEADER” option set to

indicate that each file in a sub-folder includes a header record with the column names:

The output below shows the table definitions for two of the tables imported, “nation” and “region”,

where you can see that the column names in the header record were used:

rapids > describe table nation;

TABLE_NAME COLUMN_NAME DATA_TYPE ORDINAL IS_PARTITION_KEY

IS_NULLABLE PRECISION SCALE COMMENT PROPERTIES

NATION N_NATIONKEY VARCHAR 0 false

true NULL NULL NULL NULL

NATION N_NAME VARCHAR 1 false

true NULL NULL NULL NULL

NATION N_REGIONKEY VARCHAR 2 false

true NULL NULL NULL NULL

NATION N_COMMENT VARCHAR 3 false

true NULL NULL NULL NULL

4 row(s) returned (0.17 sec)

rapids > describe table region;

2,NORTH AMERICA,aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd

3,EUROPE,dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds

4,SOUTH AMERICA,csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda

5,ASIA,i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

rapids > drop table customer;

0 row(s) returned (0.10 sec)

rapids > drop table lineitem;

0 row(s) returned (0.10 sec)

rapids > drop table nation;

0 row(s) returned (0.10 sec)

rapids > drop table orders;

0 row(s) returned (0.10 sec)

rapids > drop table part;

0 row(s) returned (0.09 sec)

rapids > drop table partsupp;

0 row(s) returned (0.09 sec)

rapids > drop table region;

0 row(s) returned (0.10 sec)

rapids > drop table supplier;

0 row(s) returned (0.09 sec)

rapids > IMPORT MOXE.* FROM FOLDERS 'node://db1/

tpch_small_folders_with_headers WITH HEADER;

0 row(s) returned (0.32 sec)

RapidsDB SQL Syntax Guide Page 136 © Borrui Data Technology Co. Ltd 2022

TABLE_NAME COLUMN_NAME DATA_TYPE ORDINAL IS_PARTITION_KEY

IS_NULLABLE PRECISION SCALE COMMENT PROPERTIES

REGION R_REGIONKEY VARCHAR 0 false

true NULL NULL NULL NULL

REGION R_NAME VARCHAR 1 false

true NULL NULL NULL NULL

REGION R_COMMENT VARCHAR 2 false

true NULL NULL NULL NULL

3 row(s) returned (0.19 sec)

Example 4:

This example shows an example where an attempt is made to do a bulk import operation where the

target tables are managed by different Connectors, which is not allowed:

Below are the current tables that are managed by the “MOXE” and “MOXE2” Connectors:

Below is the bulk import command that will attempt to do imports against all of the tables shown above,

which is not allowed because the tables are managed by two different Connectors. The error message

shows one table from each Connector which would have been imported into, which in this example are

the “PART” table managed by the “MOXE2” Connector and “NATION” table managed by the “MOXE”

Connector.

7.11 EXPORT Using SELECT

This section covers the exporting of the results of a query to a file or folder.

rapids > show tables;

CATALOG_NAME SCHEMA_NAME TABLE_NAME

MOXE

MOXE

MOXE

MOXE

MOXE

MOXE

MOXE2

MOXE2

…

MOXE

MOXE

MOXE

MOXE

MOXE

MOXE

MOXE2

MOXE2

CUSTOMER

LINEITEM

NATION

ORDERS

REGION

SUPPLIER

PART

PARTSUPP

29 row(s) returned (0.23 sec)

rapids > IMPORT * FROM FOLDERS 'node://db1/tpch_small';

Unexpected Exception:

Wildcard import to multiple Connectors: PART, NATION

RapidsDB SQL Syntax Guide Page 137 © Borrui Data Technology Co. Ltd 2022

7.11.1 EXPORT Using SELECT TO a File

This section provides examples for writing the results of a query to a specified file using the “TO” clause

as shown below. In the examples below the hilited text is the export reference (see 7.7):

Example 1:

This example shows exporting the contents of a table, “moxe.region”, to a file “region.csv”, where the

file is located in the folder “/var/tmp/rapids/tpch_small_file_backups” on RapidsDB Cluster node “db1”.

Folder: /var/tmp/rapids/tpch_small_file_backups:

Query to export the data using the default “EXPORT” IMPEX Connector (see 7.8):

Folder “/var/tmp/rapids/tpch_small_file_backups” after the export, showing that the file has 5 records:

Example 2:

This example shows that the data being exported will by default be appended to the target.

Current contents of file

[rapids@db1 rapids]$ cat /var/tmp/rapids/tpch_small_file_backups/region.csv |

wc -l

5

[rapids@db1 rapids]$ ls /var/tmp/rapids/tpch_small_file_backups

[rapids@db1 rapids]$

rapids > SELECT * FROM moxe.region TO

'node://db1/tpch_small_file_backups/region.csv';

0 row(s) returned (0.10 sec)

[rapids@db1 rapids]$ ls /var/tmp/rapids/tpch_small_file_backups

region.csv

[rapids@db1 rapids]$ cat /var/tmp/rapids/tpch_small_file_backups/region.csv |

wc -l

5

rapids > SELECT * FROM moxe.region TO

'node://db1/tpch_small_file_backups/region.csv';

0 row(s) returned (0.10 sec)

RapidsDB SQL Syntax Guide Page 138 © Borrui Data Technology Co. Ltd 2022

New count:

Example 3:

In this example, the “REPLACE” option is used, which will result in the target file getting deleted prior to

writing the results of the query, and then the results of the query will get written to the file. In addition,

the “HEADER” option is used which will result in the first record of the file being a header record which

contains the names of the columns from the result set.

Current contents of file “region.csv”:

Export command specifying the “REPLACE” and “HEADER” options:

Contents of exported file, with a header record with the column names from the result set:

Example 4:

[rapids@db1 rapids]$ cat /var/tmp/rapids/tpch_small_file_backups/region.csv |

wc -l

10

[rapids@db1 rapids]$ cat /var/tmp/rapids/tpch_small_file_backups/region.csv

1,UNITED STATES,adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

2,NORTH AMERICA,aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd

3,EUROPE,dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds

4,SOUTH AMERICA,csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda

5,ASIA,i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

1,UNITED STATES,adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

2,NORTH AMERICA,aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd

3,EUROPE,dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds

4,SOUTH AMERICA,csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda

5,ASIA,i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

rapids > SELECT * FROM moxe.region TO REPLACE

'node://db1/tpch_small_file_backups/region.csv' WITH HEADER;

0 row(s) returned (0.08 sec)

[rapids@db1 rapids]$ cat /var/tmp/rapids/tpch_small_file_backups/region.csv

R_REGIONKEY,R_NAME,R_COMMENT

1,UNITED STATES,adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

2,NORTH AMERICA,aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd

3,EUROPE,dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds

4,SOUTH AMERICA,csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda

5,ASIA,i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

RapidsDB SQL Syntax Guide Page 139 © Borrui Data Technology Co. Ltd 2022

This is the same as the previous example, except this time the BACKUP Property is set “true” which

results in the “region.csv” file getting moved to a backup folder named

“_.backup.<internal_timestamp>” and then the export of the query results is done.

where <internal_timestamp> is a numerical value for the timestamp when the query results were

generated.

Target folder with exported file along with backup folder “/_.backup.777214467718270673”, has the

original “region.csv” file before the export was done.

7.11.2 EXPORT Using SELECT TO a Folder

This section provides examples for writing the results of a query to a specified folder using the “TO

FOLDER” clause as shown below. The query results are written to a file named:

• query_results_<internal_timestamp>.csv

where,

<internal_timestamp> is the timestamp when the query results were generated.

Example 1:

This example uses the “FOLDER” option to write the results of the specified query to the specified

folder, “/var/tmp/rapids/query_results”. The file with the query results will be named

“query.<timestamp>”, where <timestamp> is the timestamp when the query was executed.

Folder: /var/tmp/rapids/query_results

rapids > SELECT * FROM moxe.region TO REPLACE

'node://db1/tpch_small_file_backups/region.csv' WITH HEADER, BACKUP;

0 row(s) returned (0.08 sec)

[rapids@db1 tpch_small_file_backups]$ ls

/var/tmp/rapids/tpch_small_file_backups/*

/var/tmp/rapids/tpch_small_file_backups/region.csv

/var/tmp/rapids/tpch_small_file_backups/_.backup.777214467718270673:

region.csv

[rapids@db1 rapids]$ ls /var/tmp/rapids/query_results

[rapids@db1 rapids]$

rapids > SELECT * FROM moxe.region TO FOLDER 'node://db1/query_results';

0 row(s) returned (0.08 sec)

RapidsDB Release 4.3.3 User Guide Page 140 © Borrui Data Technology Co. Ltd 2022

Target folder, “/var/tmp/rapids/query_results”, after export:

Example 2:

This example shows a second query results file being written to the same target folder:

Current contents of target folder:

Export command:

Contents of target folder with new query results file:

Example 3:

This example shows the use of the “REPLACE” and “BACKUP” options where the existing files (with a

“.csv” suffix) from the specified folder are first moved to a backup folder and then the new query results

files are written:

Current target folder:

[rapids@db1 query_results]$ ls /var/tmp/rapids/query_results

query_results.2320079842552510970.csv

[rapids@db1 rapids]$ ls /var/tmp/rapids/query_results

query_results.3959867675829689450.csv

[rapids@db1 rapids]$ cat

/var/tmp/rapids/query_results/query_results.3959867675829689450.csv

1,UNITED STATES,adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

2,NORTH AMERICA,aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd

3,EUROPE,dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds

4,SOUTH AMERICA,csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda

5,ASIA,i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

rapids > SELECT * FROM moxe.customer WHERE customer.c_acctbal >0 AND EXISTS

(SELECT * FROM vip_customer WHERE vip_customer.c_custkey =

customer.c_custkey) TO FOLDER 'node://db1/query_results';

0 row(s) returned (0.41 sec)

[rapids@db1 query_results]$ ls /var/tmp/rapids/query_results

query_results.1910530767001465758.csv query_results.2320079842552510970.csv

[rapids@db1 rapids]$ ls /var/tmp/rapids/query_results

query_results.1500591431418200400.csv query_results.3449950617860697261.csv

RapidsDB Release 4.3.3 User Guide Page 141 © Borrui Data Technology Co. Ltd 2022

Export command with “REPLACE” option set:

The backup folder will get created in the parent directory of the folder specified in the export reference,

which in this case would be “/var/tmp/rapids”:

The contents of the backup folder are the original files prior to the export:

Example 4:

This example shows the use of the “REPLACE” option with “BACKUP=false” to first delete all existing files

from the specified folder before writing the new query results file.

Contents of target folder with new query results file:

Contents of the parent directory:

Export command using “REPLACE” option:

rapids > SELECT * FROM moxe.customer WHERE customer.c_acctbal > 0 AND EXISTS

(SELECT * FROM vip_customer WHERE vip_customer.c_custkey =

customer.c_custkey) TO REPLACE FOLDER 'node://db1/query_results' WITH BACKUP;

0 row(s) returned (0.76 sec)

[rapids@db1 rapids]$ ls /var/tmp/rapids

_.backup.4636680165345356631 query_results SFSMALL text

tpch_small_backup

formats

tpch_small_file_backups

tpch_small_files

SF100 single tpch_small

tpch_small_with_headers

[rapids@db1 rapids]$ ls

/var/tmp/rapids/_.backup.4636680165345356631/query_results

query_results.1500591431418200400.csv query_results.3449950617860697261.csv

[rapids@db1 query_results]$ ls /var/tmp/rapids/query_results

query_results.1910530767001465758.csv query_results.2320079842552510970.csv

[rapids@db1 /var/tmp/rapids]$ ls /var/tmp/rapids

_.backup.4107715935291356825

tpch_small_files

query_results

tpch_small_file_with_headers

SFSMALL tpch_small

tpch_small_folders_with_headers

text tpch_small_file_backups

rapids > SELECT * FROM moxe.customer WHERE customer.c_acctbal > 0 AND EXISTS

(SELECT * FROM vip_customer WHERE vip_customer.c_custkey =

customer.c_custkey) TO REPLACE FOLDER 'node://db1/query_results';

RapidsDB Release 4.3.3 User Guide Page 142 © Borrui Data Technology Co. Ltd 2022

0 row(s) returned (0.37 sec)

Contents of target folder after export showing that two previous files were deleted:

No new backup folder was created:

7.12 Bulk EXPORT

The EXPORT statement is used for directly exporting multiple tables in a single request:

bulkReference:

Option Required? Default? Description

bulkReference Yes N/A Specifies the three-level (catalog/schema/table) names
for the table(s) to be exported. Wildcards may be
specified (using asterisk '*') for any of the name
components. If catalog name and/or schema name are
omitted, CURRENT_CATALOG and CURRENT_SCHEMA
are used (if set).

APPEND No Yes Append the exported data to any existing file or folder at
the destination (as specified by the exportReference –
see below). (Note: may not be supported for some
Connectors and/or destinations.)

This is the default behavior

REPLACE No No Delete any existing files with a suffix of “.csv” (when the
“FILES” option is specified in the export reference (see
11.8)) or all the files with a suffix of “.csv” in a sub-folder

[rapids@db1 query_results]$ ls /var/tmp/rapids/query_results

query_results.9088214351952178143.csv

[rapids@db1 /var/tmp/rapids]$ ls /var/tmp/rapids

_.backup.4107715935291356825

tpch_small_files

query_results

tpch_small_file_with_headers

SFSMALL tpch_small

tpch_small_folders_with_headers

text tpch_small_file_backups

RapidsDB Release 4.3.3 User Guide Page 143 © Borrui Data Technology Co. Ltd 2022

 (when the “FOLDERS” option is specified in the export
reference (see folder 7.7)) .

If the “BACKUP” Property for the Connector (see 7.4) is
“true” then instead of deleting the files in the folder (or
sub-folder), the files will be moved to a backup folder.

exportReference Yes N/A An Export Reference (see 7.7) identifying the destination
for the exported data.

7.12.1 Backing Up Files/Sub-Folders When Doing a REPLACE

When doing a bulk export operation with the “REPLACE” option (see above), the user is requesting that

the target files for the export (when the export reference is using the “FILES” option, which is the default

- see 7.12.2 for examples), or the files in the target sub-folders when the export reference is using the

“FOLDERS” option (see 7.12.3 for examples), are to be replaced with new copies. In order to allow the

user to recover any replaced files, the IMPEX Connector supports the “BACKUP” Property (see 7.12.2 for

examples), which when set to “true” results in the system moving the files to be replaced to a backup

folder so that they can be recovered after the export operation if needed. See 7.12.1.1 for more

information on backup with the “FILES”option, and 7.12.1.2 for more information on backup with the

“FOLDERS” option. By default, all IMPEX Connectors have the “BACKUP” Property set “false” which

means that all bulk export operations where the “REPLACE” option is specified no backup of the existing

files will be done.

7.12.1.1 Backup for FILES option

When doing a backup for the FILES option (BACKUP=true), a backup folder will get created in the parent

directory of the folder specified in the export reference, with the name of the backup folder being:

_.backup.<epoch timestamp>/<export folder>

where,

<epoch timestamp> is the Unix Epoch timestamp when the export command was executed

<export folder> is the name of the folder specified in the export reference in the bulk export command

All files with a suffix of “.csv” from the folder specified in the export reference in the bulk export

command will be moved to the backup folder.

NOTE:

Since the “BACKUP” Property is set “false” by default, no backup of existing files will be performed when

the “REPLACE” option is specified. If needed, the user can change the default setting for the “BACKUP”

Property to “true” to ensure that a backup copy is made:

or, by setting the “BACKUP” Property as part of the bulk export command:

CREATE CONNECTOR EXPORT_NOBACKUP TYPE IMPEX WITH BACKUP,…;

RapidsDB Release 4.3.3 User Guide Page 144 © Borrui Data Technology Co. Ltd 2022

See Examples 2 and 3 in section 7.13.2 below for more information. Example:

This example is using the default “EXPORT” Connector, which for this example is using the default

setting for the “PATH” Property which is “/var/tmp/rapids”.

In this example any files with a suffix of “.csv” that are present in the folder specified in the export

reference, which in this example would be “/var/tmp/rapids/tpch_small_backups”, would be moved to

a folder in the parent directory, which in this example would be “/var/tmp/rapids”, where the backup

folder would be named similarly to the following:

“/var/tmp/rapids/tpch_small_file_backups/_.backup.777214467718270673/ tpch_small_file_backups”

If needed, the user can then recover any needed files from the backup folder.

7.12.1.2 Backup for FOLDERS option

When doing a backup for the FOLDERS option (in the export reference), a backup folder will get created

in each subfolder which holds the export files for each table being exported. The name of the backup

folder will be:

_.backup.<epoch timestamp>

where,

<epoch timestamp> is the Unix Epoch timestamp when the export command was executed

All files with a suffix of “.csv” from the sub-folder moved to the backup folder. See example below for

more details.

NOTE:

Since the “BACKUP” Property is set “false” by default, no backup of existing files will be performed when

the “REPLACE” option is specified. If needed, the user can change the default setting for the “BACKUP”

Property to “true” to ensure that a backup copy is made:

or, by setting the “BACKUP” Property as part of the bulk export command:

See Examples 2 and 3 in section 7.12.3 below for more information.

EXPORT MOXE.* TO REPLACE 'node://db1/tpch_small_file_backups' WITH BACKUP, HEADER,

DELIMITER='|', ENCLOSED_BY="'";

EXPORT MOXE.* TO REPLACE 'node://db1/tpch_small_file_backups' WITH HEADER, DELIMITER='|',

ENCLOSED_BY="'";

CREATE CONNECTOR EXPORT_NOBACKUP TYPE IMPEX WITH BACKUP,…;

rapids > EXPORT MOXE.* TO FOLDERS 'node://db1/tpch_small_backup' WITH HEADER, BACKUP;

RapidsDB Release 4.3.3 User Guide Page 145 © Borrui Data Technology Co. Ltd 2022

Example:

This example is using the default “EXPORT” Connector, which for this example is using the default

setting for the “PATH” Property which is “/var/tmp/rapids”. In this example, assume that one of the

tables being exported in named “NATION”.

 rapids > EXPORT MOXE.* TO FOLDERS 'node://db1/tpch_small_backup' WITH BACKUP, HEADER;

In this example any files with a suffix of “.csv” that are present in the sub-folder associated with each

table being exported, such as “/var/tmp/rapids/tpch_small_backup/NATION” would be moved to a

backup folder in the sub-folder directory for that table, which in this example would be named similarly

to the following:

“/var/tmp/rapids/ tpch_small_backup/NATION/_.backup.777214467718270673/”

If needed, the user can then recover any needed files from any of the backup folders.

7.12.2 Bulk EXPORT Using FILES Option

The “FILES” option for a bulk export indicates that each table should be written out to the specified

folder with name <table name>.csv.

Example 1:

This is an example of a simple bulk export where all of the tables from the schema “MOXE” are to be

exported to the folder /var/tmp/rapids/tpch_small_file_backups, with each file having a header record

with the column names.

Current contents of folder /var/tmp/rapids/tpch_small_file_backups:

Tables to be exported:

rapids > show

CATALOG_NAME

tables;

SCHEMA_NAME

TABLE_NAME

MOXE MOXE CUSTOMER

MOXE MOXE LINEITEM

MOXE MOXE NATION

MOXE MOXE ORDERS

MOXE MOXE PART

MOXE MOXE PARTSUPP

MOXE MOXE REGION

MOXE MOXE SUPPLIER

MOXE MOXE VIP_CUSTOMER

[rapids@db1 tpch_small_file_backups]$ ls

/var/tmp/rapids/tpch_small_file_backups

AAREADme.txt

RapidsDB Release 4.3.3 User Guide Page 146 © Borrui Data Technology Co. Ltd 2022

Export command. The “FILES” option is not required because it is the default. The “HEADER” property

is set to indicate that a header record is to be written for each exported table, and the “DELIMITER”

property is set to the semicolon character and the “ENCLOSED_BY” property is set to the single quote

character:

Folder after the export showing the exported tables:

Example of header record in one of the files, along with the field delimiter being set to the semicolon

character and the enclosed_by character being set to single quote. Note that some of the varchar fields

are enclosed in single quotes, and this is because those fields include the delimiter character which is a

semicolon. The only time that character fields are enclosed is when they contain the delimiter

character.:

[rapids@db1 tpch_small_file_backups]$ cat NATION.csv

rapids > EXPORT MOXE.* TO 'node://db1/tpch_small_file_backups' WITH HEADER,

DELIMITER=';', ENCLOSED_BY="'";

0 row(s) returned (9.43 sec)

[rapids@db1 tpch_small_file_backups]$ ls

AAREADME.txt CUSTOMER.csv LINEITEM.csv NATION.csv ORDERS.csv PART.csv

PARTSUPP.csv REGION.csv SUPPLIER.csv VIP_CUSTOMER.csv

N_NATIONKEY;N_NAME;N_REGIONKEY;N_COMMENT

1;UNITED STATES;1;adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

2;CANADA;2;aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd

3;MEXICO;2;94iuakdjvoakdjvoadjogadhgkjagkjazdgkjzgd

4;GERMANY;3;zoidhgdjhtehgkhgnkjsdzdkjg

5;FRANCE;3;odijzoietjoizejtoizejgioazgkjan

6;ENGLAND;3;oaidjfozdjfoizjeofjelkjtkljlkjg

7;NORWAY;3;oaieurlajelgtkjalkgjlkajsgl

8;DENMARK;3;zokjkvlzkjdlgfjzdlkgjlakdjglkdjglkajglkjglkjdglkjfdlhk

9;SWEDEN;3;zkjdhfkjdvmn mv bmz lkfnvkzdfng

10;ITALY;3;'dkjlz;f;lsfkh;lakhr;lajlfkgakjdba'

11;SWITZERLAND;3;'ozkdjvdjtkjaldg;lg;lkfh;lks;flhadfbjfhd'

12;POLAND;3;kdjlkzdjtljelktjlzjlkrjlkdhkbafjebe

13;RUSSIA;3;'zflkzdjglzjglzdkg;lrdkh;ldfkh;dflkh'

14;CHILE;4;'akdjflkjd;ljfal;djgsdjglkdsfjgkjasjfbjha'

15;PERU;4;'ldkjflaje;ajlgdjzlkdgkzjdhfzbsjdhfb'

16;ARGENTINA;4;dkjzkldjlkgjzldgjkhghfjgfsg

17;BOLIVIA;4;alkjdflkajdljgaljglkajgljadfg

18;BRAZIL;4;jadalkjakdjlkjakgjalkfjglkajfgjalfg

19;GUYANA;4;zlkjdzkjdlkgjaldkgjlakjdglkajdglkjdfkgjlsdfkjhlksjfh

20;CHINA;5;lkdjaljdlkajdgkjafghskfdjghksjffhkjslkh

21;JAPAN;5;'skfjg;lskjfhksjkhjsjhakjbgbgbs'

22;INDIA;5;'kadjflkajdlkjgs;lkfjglskfjglksfjhks'

RapidsDB Release 4.3.3 User Guide Page 147 © Borrui Data Technology Co. Ltd 2022

Example 2:

This example shows the use of the “REPLACE” option to replace the existing files in the specified folder,

(with the default “BACKUP” option set “false”), which will result in the existing files in the target folder

getting deleted prior to the export of the tables.

Current contents of target folder:

[rapids@db1 tpch_small_file_backups]$ ls -l

/var/tmp/rapids/tpch_small_file_backups

total 145032

-rw-rw-r--. 1 rapids rapids 20 Sep 20 20:21 AAREADME.txt

-rw-rw-r--. 1 rapids rapids 4516901 Sep 20 20:52 CUSTOMER.csv

-rw-rw-r--. 1 rapids rapids 125657939 Sep 20 20:52 LINEITEM.csv

-rw-rw-r--. 1 rapids rapids 85 Sep 20 20:52 MYTABLE.csv

-rw-rw-r--. 1 rapids rapids 2348 Sep 20 20:52 NATION.csv

-rw-rw-r--. 1 rapids rapids 7550516 Sep 20 20:52 ORDERS.csv

-rw-rw-r--. 1 rapids rapids 4526668 Sep 20 20:52 PART.csv

-rw-rw-r--. 1 rapids rapids 4739265 Sep 20 20:52 PARTSUPP.csv

-rw-rw-r--. 1 rapids rapids 82 Sep 20 20:52 REGION2.csv

-rw-rw-r--. 1 rapids rapids 439 Sep 20 20:52 REGION.csv

-rw-rw-r--. 1 rapids rapids 3344 Sep 20 20:52 SPECIAL_CUSTOMER.csv

-rw-rw-r--. 1 rapids rapids 1478162 Sep 20 20:52 SUPPLIER.csv

-rw-rw-r--. 1 rapids rapids 4601 Sep 20 20:52 VIP_CUSTOMER.csv

Export command with “REPLACE” option using the default “BACKUP” Property (=”false”):

Contents of target folder after the export showing new copies of the exported files and no backups:

[rapids@db1 tpch_small_file_backups]$ ls -l

/var/tmp/rapids/tpch_small_file_backups

total 145032

-rw-rw-r--. 1 rapids rapids 20 Sep 20 20:21 AAREADME.txt

-rw-rw-r--. 1 rapids rapids 4516901 Sep 20 21:12 CUSTOMER.csv

-rw-rw-r--. 1 rapids rapids 125657939 Sep 20 21:12 LINEITEM.csv

-rw-rw-r--. 1 rapids rapids 85 Sep 20 21:12 MYTABLE.csv

-rw-rw-r--. 1 rapids rapids 2348 Sep 20 21:12 NATION.csv

-rw-rw-r--. 1 rapids rapids 7550516 Sep 20 21:12 ORDERS.csv

-rw-rw-r--. 1 rapids rapids 4526668 Sep 20 21:12 PART.csv

23;PHILLIPINES;5;'aldkjflkadjflkjadvjz;lvlkdlgjakjdg'

24;THAILAND;5;aldkjflakdjglkajgflkfjgkjsflkjgalkjfg

25;SINGAPORE;5;dlkjalkdjflkajdlkznvknzkdfglkzjdfhglkjflkh

rapids > EXPORT MOXE.* TO REPLACE 'node://db1/tpch_small_file_backups' WITH

HEADER, DELIMITER='|', ENCLOSED_BY="'";

0 row(s) returned (9.06 sec)

RapidsDB Release 4.3.3 User Guide Page 148 © Borrui Data Technology Co. Ltd 2022

-rw-rw-r--. 1 rapids rapids 4739265 Sep 20 21:12 PARTSUPP.csv

-rw-rw-r--. 1 rapids rapids 82 Sep 20 21:12 REGION2.csv

-rw-rw-r--. 1 rapids rapids 439 Sep 20 21:12 REGION.csv

-rw-rw-r--. 1 rapids rapids 3344 Sep 20 21:12 SPECIAL_CUSTOMER.csv

-rw-rw-r--. 1 rapids rapids 1478162 Sep 20 21:12 SUPPLIER.csv

-rw-rw-r--. 1 rapids rapids 4601 Sep 20 21:12 VIP_CUSTOMER.csv

Example 3:

This example shows the use of the “REPLACE” option to replace the existing files (ending in “.csv”) in the

specified folder, with the “BACKUP” option set to “true”, which will result in the existing files being

moved to a backup folder so that they can be recovered in the future if needed (see 7.12.1) for more

information).

Current backup folder:

[rapids@db1 tpch_small_file_backups]$ ls

/var/tmp/rapids/tpch_small_file_backups

total 145032

-rw-rw-r--. 1 rapids rapids 20 Sep 20 20:21 AAREADME.txt

-rw-rw-r--. 1 rapids rapids 4516901 Sep 20 20:46 CUSTOMER.csv

-rw-rw-r--. 1 rapids rapids 125657939 Sep 20 20:46 LINEITEM.csv

-rw-rw-r--. 1 rapids rapids 85 Sep 20 20:46 MYTABLE.csv

-rw-rw-r--. 1 rapids rapids 2348 Sep 20 20:46 NATION.csv

-rw-rw-r--. 1 rapids rapids 7550516 Sep 20 20:46 ORDERS.csv

-rw-rw-r--. 1 rapids rapids 4526668 Sep 20 20:46 PART.csv

-rw-rw-r--. 1 rapids rapids 4739265 Sep 20 20:46 PARTSUPP.csv

-rw-rw-r--. 1 rapids rapids 82 Sep 20 20:46 REGION2.csv

-rw-rw-r--. 1 rapids rapids 439 Sep 20 20:46 REGION.csv

-rw-rw-r--. 1 rapids rapids 3344 Sep 20 20:46 SPECIAL_CUSTOMER.csv

-rw-rw-r--. 1 rapids rapids 1478162 Sep 20 20:46 SUPPLIER.csv

-rw-rw-r--. 1 rapids rapids 4601 Sep 20 20:46 VIP_CUSTOMER.csv

Bulk export command with the “REPLACE” option specified, and the “BACKUP” Property set:

Contents of target folder after the export. Note that there are new copies of the files for the exported

tables, and that there is a backup folder, “_.backup.8186816724347336840” that contains the original

files:

rapids > EXPORT MOXE.* TO REPLACE 'node://db1/tpch_small_file_backups' WITH

BACKUP, HEADER, DELIMITER='|', ENCLOSED_BY="'";

0 row(s) returned (9.29 sec)

[rapids@db1 tpch_small_file_backups]$ ls -l

/var/tmp/rapids/tpch_small_file_backups

total 145032

RapidsDB Release 4.3.3 User Guide Page 149 © Borrui Data Technology Co. Ltd 2022

drwx------. 2 rapids rapids

_.backup.8186816724347336840

246 Sep 20 20:52

-rw-rw-r--. 1 rapids rapids 20 Sep 20 20:21 AAREADME.txt

-rw-rw-r--. 1 rapids rapids 4516901 Sep 20 20:52 CUSTOMER.csv

-rw-rw-r--. 1 rapids rapids 125657939 Sep 20 20:52 LINEITEM.csv

-rw-rw-r--. 1 rapids rapids 85 Sep 20 20:52 MYTABLE.csv

-rw-rw-r--. 1 rapids rapids 2348 Sep 20 20:52 NATION.csv

-rw-rw-r--. 1 rapids rapids 7550516 Sep 20 20:52 ORDERS.csv

-rw-rw-r--. 1 rapids rapids 4526668 Sep 20 20:52 PART.csv

-rw-rw-r--. 1 rapids rapids 4739265 Sep 20 20:52 PARTSUPP.csv

-rw-rw-r--. 1 rapids rapids 439 Sep 20 20:52 REGION.csv

-rw-rw-r--. 1 rapids rapids 1478162 Sep 20 20:52 SUPPLIER.csv

-rw-rw-r--. 1 rapids rapids 4601 Sep 20 20:52 VIP_CUSTOMER.csv

Here is the backup folder with the original files:

[rapids@db1 tpch_small_file_backups]$ ls -l

/var/tmp/rapids/tpch_small_file_backups/_.backup.8186816724347336840

total 145032

-rw-rw-r--. 1 rapids rapids 4516901 Sep 20 20:46 CUSTOMER.csv

-rw-rw-r--. 1 rapids rapids 125657939 Sep 20 20:46 LINEITEM.csv

-rw-rw-r--. 1 rapids rapids 2348 Sep 20 20:46 NATION.csv

-rw-rw-r--. 1 rapids rapids 7550516 Sep 20 20:46 ORDERS.csv

-rw-rw-r--. 1 rapids rapids 4526668 Sep 20 20:46 PART.csv

-rw-rw-r--. 1 rapids rapids 4739265 Sep 20 20:46 PARTSUPP.csv

-rw-rw-r--. 1 rapids rapids 439 Sep 20 20:46 REGION.csv

-rw-rw-r--. 1 rapids rapids 1478162 Sep 20 20:46 SUPPLIER.csv

-rw-rw-r--. 1 rapids rapids 4601 Sep 20 20:46 VIP_CUSTOMER.csv

7.12.3 Bulk EXPORT Using FOLDERS Option

The “FOLDERS” option for a bulk export indicates that each table should be written out in a file in a

separate sub-folder (under the folder name specified in the export reference) of the same name. The

name of the file for the exported table will be: <table name>>internal timestamp>.csv, for example

“SUPPLIER.5674361502309579557.csv.”

The following examples all assume that the schema “MOXE” has the following tables: CUSTOMER,

LINEITEM, NATION, ORDERS, PART, PARTSUPP, REGION, SUPPLIER, and VIP_CUSTOMER

Example 1:

This is an example of a bulk export where all of the tables from the schema “MOXE” are to be exported

to sub-folders under the folder “/var/tmp/rapids/tpch_small_backup”, with each export file having a

header record with the column names.

Current contents of target folder:

[rapids@db1 rapids]$ ls /var/tmp/rapids/tpch_small_folder_backup

RapidsDB Release 4.3.3 User Guide Page 150 © Borrui Data Technology Co. Ltd 2022

Export command with the “FOLDERS” option

Contents of target folder after export:

[rapids@db1 rapids]$ ls /var/tmp/rapids/tpch_small_folder_backup/*

/var/tmp/rapids/tpch_small_folder_backup/CUSTOMER:

customer.7842865417157613111.csv

/var/tmp/rapids/tpch_small_folder_backup/LINEITEM:

lineitem.5733617788919186767.csv

/var/tmp/rapids/tpch_small_folder_backup/NATION:

nation.1554588814455789912.csv

/var/tmp/rapids/tpch_small_folder_backup/ORDERS:

orders.6236921272679811628.csv

/var/tmp/rapids/tpch_small_folder_backup/PART:

part.5359586359844433055.csv

/var/tmp/rapids/tpch_small_folder_backup/PARTSUPP:

partsupp.9185786343941211758.csv

/var/tmp/rapids/tpch_small_folder_backup/REGION:

region.7738184263372301381.csv

/var/tmp/rapids/tpch_small_folder_backup/SUPPLIER:

supplier.4865294074583220638.csv

/var/tmp/rapids/tpch_small_folder_backup/VIP_CUSTOMER:

vip_customer.6098121580374720698.csv

Example 2:

This example shows the use of the “REPLACE” option which will result in the existing files (ending in

“.csv”) in the sub-folder for each table being deleted prior to the export being executed.

Below is the current contents of one of the sub-folders for one of the tables (MOXE.LINEITEM)being

exported:

[rapids@db1 rapids]$

rapids > EXPORT MOXE.* TO FOLDERS 'node://db1/tpch_small_folder_backup' WITH

HEADER;

0 row(s) returned (9.43 sec)

[rapids@db1 rapids]$ ls /var/tmp/rapids/tpch_small_folder_backup/LINEITEM

lineitem.6482498489887946522.csv

RapidsDB Release 4.3.3 User Guide Page 151 © Borrui Data Technology Co. Ltd 2022

Export command with the “REPLACE” option :

Contents of the target folder showing the sub-folders for each table, and then the contents of the sub-

folder for the “LINEITEM” table showing that a new copy of the exported file has been created, with no

backup folder getting created:

Example 3:

This example again shows the use of the “REPLACE” option to replace the existing files (ending in “.csv”)

in the sub-folder for each table, but in this example the “BACKUP” option is set which results in the

existing files being moved to a backup folder so that they can be recovered in the future if needed (see

11.13.1.2 for more information). The backup folder will be created in the folder specified in the export

reference.

Below is the current contents of one of the sub-folders for one of the tables (MOXE.LINEITEM)being

exported:

Export command specifying the “REPLACE” option:

Contents of sub-folder after the export showing the new export file:

Contents of folder, “/var/tmp/rapids/tpch_small_backup”, specified in the export reference, showing

the backup folder that was created, “_.backup.6582410041113988538”:

rapids > EXPORT MOXE.* TO REPLACE FOLDERS

'node://db1/tpch_small_folder_backup' WITH HEADER;

0 row(s) returned (9.06 sec)

[rapids@db1 tpch_small_folder_backup]$ ls

CUSTOMER LINEITEM NATION ORDERS PART PARTSUPP REGION SUPPLIER

VIP_CUSTOMER

[rapids@db1 tpch_small_backup]$ ls LINEITEM

lineitem.7547050142483739703.csv

[rapids@db1 rapids]$ ls /var/tmp/rapids/tpch_small_folder_backup/LINEITEM

lineitem.6260590681045515755.csv

rapids > EXPORT MOXE.* TO REPLACE FOLDERS

'node://db1/tpch_small_folder_backup' WITH HEADER, BACKUP;

0 row(s) returned (9.06 sec)

[rapids@db1 rapids]$ ls /var/tmp/rapids/tpch_small_backup/LINEITEM

lineitem.6482498489887946522.csv

RapidsDB Release 4.3.3 User Guide Page 152 © Borrui Data Technology Co. Ltd 2022

Contents of backup folder showing all of the original sub-folders:

Sample contents of the backup LINEITEM sub-folder from the backup showing that it contains the

original export file for the “LINEITEM” table:

7.13 Error Handling

7.13.1 ERROR_PATH

The “ERROR_PATH” Property (see 7.4) specifies the fully qualified path name to use as the base path

for the error files generated if an import operation fails. By default, the ERROR_PATH is set to

“/var/tmp/rapids_errors”. For each failed import, a sub-folder will be created in the folder specified by

the “ERROR_PATH”:

The sub-folder name is of the form:

SSN_<session number>_<node name>_<query number>

where,

<session number> is the session number for the query that failed

<node name> is the name of the RapidsDB cluster node where the query was submitted

<query number> is the query number for that session

For example, “SSN_2_DB1_67” indicates that this error occurred on session #2 on the RapidsDB Cluster

node “DB1” and it was query #67.

The sub-folder will include two files:

[rapids@db1 rapids]$ ls /var/tmp/rapids/tpch_small_folder_backup

_.backup.6582410041113988538 CUSTOMER LINEITEM NATION ORDERS PART

PARTSUPP REGION SUPPLIER VIP_CUSTOMER

[rapids@db1 rapids]$ ls

/var/tmp/rapids/tpch_small_folder_backup/_.backup.6582410041113988538

CUSTOMER LINEITEM NATION ORDERS PART PARTSUPP REGION SUPPLIER

VIP_CUSTOMER

[rapids@db1 rapids]$ ls

/var/tmp/rapids/tpch_small_folder_backup/_.backup.6582410041113988538/LINEITE

M

lineitem.6260590681045515755.csv

RapidsDB Release 4.3.3 User Guide Page 153 © Borrui Data Technology Co. Ltd 2022

1 A log file containing details on the conversion errors, one line per error. The format for the

log file name is:

<source>-messages.log

where,

<source> is used to identify the source file or folder with the errors, and has the format:

node <node name>_<path name>-messages.log

where,

<node name> is the RapidsDB Cluster node name where the input file or folder resides

<path name> is the path name to the source file or folder

Example:

In this example, the errors occurred in the input file

“/var/tmp/rapids/SFSMALL/regionPipe.csv” on RapidsDB cluster node “db1”, and the

details for the errors will be in the folder “/var/tmp/rapids_errors/SSN_1_DB1_234” on

the same node as the input file, which is RapidsDB cluster node “db1”. The log file will be

the file

/var/tmp/rapids_errors/SSN_1_DB1_234/node db1_var_tmp_rapids_SFSMALL_regionP

ipe_csv-messages.log:

rapids > insert into region_b SELECT * FROM (csv_header::

'node://db1/SFSMALL/regionPipe.csv');

Error: import errors (5) in /var/tmp/rapids_errors/SSN_1_DB1_234

[rapids@db1 tpch_small_backup]$ cat

/var/tmp/rapids_errors/SSN_1_DB1_234/node db1_var_tmp_rapids_SFSM

ALL_regionPipe_csv-messages.log

segment 0 line 1: java.lang.NumberFormatException: For input

string: "UNITED STATES"

segment 0 line 2: java.lang.NumberFormatException: For input

string: "NORTH AMERICA,aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd"

segment 0 line 3: java.lang.NumberFormatException: For input

string: "EUROPE"

segment 0 line 4: java.lang.NumberFormatException: For input

string: "SOUTH AMERICA"

segment 0 line 5: java.lang.NumberFormatException: For input

string: "ASIA"

RapidsDB Release 4.3.3 User Guide Page 154 © Borrui Data Technology Co. Ltd 2022

2 A data file containing the records with the conversion errors, where the records in the data

file match up with the error line in the log file described in the previous section. The

format for the data file name follows the same format as for the log file:

<source>-records.csv

where,

<source> is used to identify the source file or folder with the errors, and has the format:

node <node name>_<path name>-records.csv

where,

<node name> is the RapidsDB Cluster node name where the file or folder resides

<path name> is the path name to the source file or folder

Example:

From the previous example, the data file with the error records will be the file:

“/var/tmp/rapids_errors/SSN_1_DB1_234/node db1_var_tmp_rapids_SFSMALL_region

Pipe_csv-records.csv”:

See 11.13.3 for more examples

The default for the “ERROR_PATH” is “/var/tmp/rapids_errors”, but it can be changed either at the

Connector level or as part of the import command:

[rapids@db1 tpch_small_backup]$ cat

/var/tmp/rapids_errors/SSN_1_DB1_234/node db1_var_tmp_rapids_SFSM

ALL_regionPipe_csv-records.csv

1|UNITED

STATES|adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

2|NORTH AMERICA,aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd

3|EUROPE|dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds

4|SOUTH AMERICA|csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda

5|ASIA|i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

rapids > create connector csv_error type impex with

error_path='/data/errors';

0 row(s) returned (2.31 sec)

rapids > insert into bad2 select col1, col2 from

('node://db1/text/lead_trail_blanks.csv' WITH

ERROR_PATH='/var/tmp/dcerrors');

Unexpected Exception:

import errors (6) in /var/tmp/dcerrors/SSN_2_DB1_76

RapidsDB Release 4.3.3 User Guide Page 155 © Borrui Data Technology Co. Ltd 2022

7.13.2 ERROR_LIMIT

The “ERROR_LIMIT” Property specifies the maximum number of allowable errors for an import. Once

the limit is reached the import operation will terminate. By default, the limit is set to ten. The possible

values for ERROR_LIMIT are:

• -1 No limit, the import will continue regardless of the number of errors

• 0 The import will terminate on the first error

• >0 The import will terminate after the specified number

Example 1:

This example shows an import hitting the default limit:

Example 2:

This example shows the effect of increasing the limit:

7.13.3 Data Conversion Errors

As described in the section 7.13.1, when data conversion errors happen, a sub-folder will be created in

the folder referenced by the “ERROR_PATH” property, with two files created in that sub-folder, a “*.log”

log file with details of the errors and a “*.csv” file with the errant data records.

The following examples show how the errors are reported for an INSERT … SELECT, bulk import using the

“FILES” option and a bulk insert using the “FOLDERS” option.

Example 1 INSERT … SELECT:

In this example, an attempt was made to insert a text field into an integer column:

rapids > create table moxe.nation_a(c1 integer, c2 integer, c3 integer, c4

integer);

0 row(s) returned (0.12 sec)

rapids > insert into moxe.nation_a SELECT * FROM

('node://db1/SFSMALL/nation.csv');

Unexpected Exception:

Error limit (10) reached:

/var/tmp/rapids_errors/SSN_1_DB1_241/node db1_var_tmp_rapids_SFSMALL_nation

_csv-messages.log

rapids > insert into moxe.nation_a SELECT * FROM

('node://db1/SFSMALL/nation.csv' WITH ERROR_LIMIT=100);

Error: import errors (25) in /var/tmp/rapids_errors/SSN_1_DB1_242

rapids > create table moxe.REGION_B (

> r_regionkey integer NOT NULL,

> r_id integer,

> r_comment varchar(152)

>) PARTITION(r_regionkey);

RapidsDB Release 4.3.3 User Guide Page 156 © Borrui Data Technology Co. Ltd 2022

The error message above indicates that the log file containing a description of the errors will be in the

log file:

“/var/tmp/rapids_errors/SSN_1_DB1_243/ node db1_var_tmp_rapids_SFSMALL_regionPipe_csv-

messages.log”

The data associated with the error messages will be in the file

“/var/tmp/rapids_errors/SSN_1_DB1_243/node db1_var_tmp_rapids_SFSMALL_regionPipe_csv-

records.csv”

The log file is indicating that there were conversion errors in the second data fields, where the data was

a text string whereas the table was expecting an integer.

Example 2 Bulk IMPORT with “FILES” option:

This example shows how errors are reported when doing a bulk import using the “FILES” option:

0 row(s) returned (0.10 sec)

rapids > insert into region_b SELECT * FROM (csv_header::

'node://db1/SFSMALL/regionPipe.csv');

Error: import errors (5) in /var/tmp/rapids_errors/SSN_1_DB1_243

[rapids@db1 SSN_1_DB1_243]$ cat

/var/tmp/rapids_errors/SSN_1_DB1_243/node db1_var_tmp_rapids_SFSMALL_region

Pipe_csv-messages.log

segment 0 line 1: java.lang.NumberFormatException: For input string: "UNITED

STATES"

segment 0 line 2: java.lang.NumberFormatException: For input string: "NORTH

AMERICA,aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd"

segment 0 line 3: java.lang.NumberFormatException: For input string: "EUROPE"

segment 0 line 4: java.lang.NumberFormatException: For input string: "SOUTH

AMERICA"

segment 0 line 5: java.lang.NumberFormatException: For input string: "ASIA"

[rapids@db1 SSN_1_DB1_243]$ cat

/var/tmp/rapids_errors/SSN_1_DB1_243/node db1_var_tmp_rapids_SFSMALL_region

Pipe_csv-records.csv

1|UNITED STATES|adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

2|NORTH AMERICA|aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd

3|EUROPE|dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds

4|SOUTH AMERICA|csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda

5|ASIA|i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

rapids > IMPORT MOXE.* REPLACE FROM 'node://db1/tpch_small_files';

Unexpected Exception:

Import partially succeeded: succeeded: 7, failed: 1

RapidsDB Release 4.3.3 User Guide Page 157 © Borrui Data Technology Co. Ltd 2022

The error message above indicates that the log file containing a description of the errors will be in the

file:

“/var/tmp/rapids_errors/SSN_3_DB1_68/node db1_var_tmp_rapids_tpch_small_files_nation_csv-

messages.log”

Below is the content of the log file:

NOTE:

The column number shown is zero-based, and so the error refers to the second field in the input data.

In the above example, the input data with the reported error will be the second data field of the input

record (column 1).

The data associated with the error messages will be in the file:

/var/tmp/rapids_errors/SSN_3_DB1_68/node db1_var_tmp_rapids_tpch_small_files_nation_csv-

records.csv

Contents of the above file, with the data fields in error hilited:

Error limit (10) reached:

/var/tmp/rapids_errors/SSN_3_DB1_68/node db1_var_tmp_rapids_tpch_small_file

s_nation_csv-messages.log

[rapids@db1 rapids]$ cat

/var/tmp/rapids_errors/SSN_3_DB1_68/node db1_var_tmp_rapids_tpch_small_file

s_nation_csv-messages.log

segment 0 line 1: com.rapidsdata.impex.ImpexParseException: Invalid

characters between delimiter (,) and enclosed_by (") column: 1, integer

segment 0 line 2: com.rapidsdata.impex.ImpexParseException: Invalid

characters between delimiter (,) and enclosed_by (") column: 1, integer

segment 0 line 3: com.rapidsdata.impex.ImpexParseException: Invalid

characters between delimiter (,) and enclosed_by (") column: 1, integer

segment 0 line 4: com.rapidsdata.impex.ImpexParseException: Invalid

characters between delimiter (,) and enclosed_by (") column: 1, integer

segment 0 line 5: com.rapidsdata.impex.ImpexParseException: Invalid

characters between delimiter (,) and enclosed_by (") column: 1, integer

segment 0 line 6: com.rapidsdata.impex.ImpexParseException: Invalid

characters between delimiter (,) and enclosed_by (") column: 1, integer

segment 0 line 7: com.rapidsdata.impex.ImpexParseException: Invalid

characters between delimiter (,) and enclosed_by (") column: 1, integer

segment 0 line 8: com.rapidsdata.impex.ImpexParseException: Invalid

characters between delimiter (,) and enclosed_by (") column: 1, integer

segment 0 line 9: com.rapidsdata.impex.ImpexParseException: Invalid

characters between delimiter (,) and enclosed_by (") column: 1, integer

segment 0 line 10: com.rapidsdata.impex.ImpexParseException: Invalid

characters between delimiter (,) and enclosed_by (") column: 1, integer

RapidsDB Release 4.3.3 User Guide Page 158 © Borrui Data Technology Co. Ltd 2022

segment 0 line 1: com.rapidsdata.impex.ImpexParseException: Invalid

characters between delimiter (,) and enclosed_by (") column: 1, integer

Example 3 Bulk IMPORT with “FOLDERS” option:

This example shows how errors are reported when doing a bulk import using the “FILES” option:

The error message above indicates that the log file containing a description of the errors will be in the

file:

“/var/tmp/rapids_errors/SSN_3_DB1_69/node db1_var_tmp_rapids_tpch_small_nation-

messages.log”

and the associated data file will be in the file:

“/var/tmp/rapids_errors/SSN_3_DB1_69/node db1_var_tmp_rapids_tpch_small_nation-records.csv”

As for the “FILES” option, the column number reported in the log file will be zero-based, for example:

Would refer to the second data field in the input data.

7.13.4 Mismatched Number of Fields and Columns on INSERT

The following error will be returned when the number of fields in the data file being imported does not

match the number of columns in the target table:

[rapids@db1 rapids]$ cat

/var/tmp/rapids_errors/SSN_3_DB1_68/node db1_var_tmp_rapids_tpch_small_file

s_nation_csv-records.csv

0,ALGERIA,0, haggle. carefully final deposits detect slyly agai

7,GERMANY,3,l platelets. regular accounts x-ray: unusual\, regular acco

24,UNITED STATES,1,y final packages. slow foxes cajole quickly. quickly

silent platelets breach ironic accounts. unusual pinto be

3,CANADA,1,eas hang ironic\, silent packages. slyly regular packages are

furiously over the tithes. fluffily bold

14,KENYA,0, pending excuses haggle furiously deposits. pending\, express

pinto beans wake fluffily past t

20,SAUDI ARABIA,4,ts. silent requests haggle. closely express packages sleep

across the blithely

2,BRAZIL,1,y alongside of the pending deposits. carefully special packages

are about the ironic forges. slyly special

22,RUSSIA,3, requests against the platelets use never according to the

quickly regular pint

5,ETHIOPIA,0,ven packages wake quickly. regu

12,JAPAN,2,ously. final\, express gifts cajole a

rapids > import MOXE.* FROM FOLDERS 'node://db1/tpch_small';

Unexpected Exception:

Import partially succeeded: succeeded: 7, failed: 1

Error limit (10) reached:

/var/tmp/rapids_errors/SSN_3_DB1_69/node db1_var_tmp_rapids_tpch_small_nati

on-messages.log

RapidsDB Release 4.3.3 User Guide Page 159 © Borrui Data Technology Co. Ltd 2022

Unexpected Exception:

Line 1 position 1: Column lists differ, x column(s) vs y column(s).

where, x is the number of columns in the import file and y is the number of columns in the target table

Example:

Target table with 3 columns:

Import file, with 4 fields:

7.13.5 Wildcard import to multiple connectors

This error occurs when an attempt is made to do a bulk import operation where the target tables are

managed by different Connectors, which is not allowed:

Example:

Below are the current tables that are managed by the “MOXE” and “MOXE2” Connectors:

Below is the bulk import command that will attempt to do imports against all of the tables shown above,

which is not allowed because the tables are managed by two different Connectors. The error message

rapids > create table moxe.bad1(c1 integer, c2 integer, c3 integer);

0 row(s) returned (0.09 sec)

rapids > insert into bad1 select * from

('node://db1/text/lead_trail_blanks.csv');

Unexpected Exception:

Line 1 position 1: Column lists differ, 4 column(s) vs 3 column(s).

[rapids@db1 text]$ cat lead_trail_blanks.csv

1, 4 leading blanks,3 trailing blanks ,1

2,A2345678901234567890,A1234567890123456789,2

3," 4 leading blanks","3 trailing blanks ",3

rapids > show tables;

CATALOG_NAME SCHEMA_NAME TABLE_NAME

MOXE

MOXE

MOXE

MOXE

MOXE

MOXE

MOXE2

MOXE2

…

MOXE

MOXE

MOXE

MOXE

MOXE

MOXE

MOXE2

MOXE2

CUSTOMER

LINEITEM

NATION

ORDERS

REGION

SUPPLIER

PART

PARTSUPP

29 row(s) returned (0.23 sec)

RapidsDB Release 4.3.3 User Guide Page 160 © Borrui Data Technology Co. Ltd 2022

shows one table from each Connector which would have been imported into, which in this example are

the “PART” table managed by the “MOXE2” Connector and “NATION” table managed by the “MOXE”

Connector.

8 REFRESH Command
The REFRESH command must be used when the underlying table metadata in a Data Store has been

changed, where the change was not the result of a CREATE or DROP table request that was sent from

RapidsDB (see section 6) and the user wishes to access the metadata information from RapidsDB. An

example would be when a new table is created in Postgres using the native Postgres psql command

interface.

The syntax for the refresh command is:

If the Connector name is specified then the refresh command will only be applied to that Connector, if

the Connector name is omitted then the refresh command will be applied to all enabled Connectors.

9 SYSTEM METADATA TABLES

9.1 OVERVIEW
RapidsDB provides a set of system metadata tables which provide metadata information about the

RapidsDB system which is similar to the information provided by the ANSI Information Schema. The

system metadata tables reside in the RAPIDS.SYSTEM catalog and schema. Each Federation has a

METADATA Connector that maintains the system metadata tables for that Federation. The table below

lists the system metadata tables:

Table Name Description

NODES A list of all of the nodes in the RapidsDB Cluster

FEDERATIONS A list of all the Federations

CONNECTORS A list of all of the Connectors in the current Federation

CATALOGS A list of the catalogs that can be accessed from the current Federation

SCHEMAS A list of the schemas that can be accessed from the current Federation

rapids > IMPORT * FROM FOLDERS 'node://db1/tpch_small';

Unexpected Exception:

Wildcard import to multiple Connectors: PART, NATION

refresh [<Connector>];

RapidsDB Release 4.3.3 User Guide Page 161 © Borrui Data Technology Co. Ltd 2022

TABLES Metadata for the tables and views that can be accessed from the current

Federation.

INDEXES Metadata for any indexes defined on tables that can be accessed from

the current Federation.

COLUMNS A list of all the columns that can be accessed from the current Federation

TABLE_PROVIDERS A list of all of the tables from each Connector, including any duplicates.

AUTHENTICATORS A list of all authenticator instances that have been created in the system.

AUTHENTICATOR_CONFIG Lists any additional custom properties about the authenticator instances

that have been created in the system.

USERS A list of all users that exist in the system.

USER_CONFIG Any additional custom properties about users that exist in the system.

SESSIONS A list of all active sessions across the cluster.

USERNAME_MAPS A list of defined mappings from an external identifier to RapidsDB

usernames.

PATTERN_MAPS A list of defined patterns for transforming an external identifier to a

RapidsDB username.

QUERIES A list of all the active queries

QUERY_STATS Query statistics for all the active queries. This table is not fully

operational as of this release and should be ignored

The system metadata tables are treated the same as any other tables by RapidsDB, and as for any user

tables, it is only necessary to include the catalog and/or schema name when there are multiple tables in

the current Federation that use the same name. Assuming that system metadata table names are all

unique within the current Federation, then the following queries will all be successful:

i) select * from rapids.system.tables;

ii) select * from system.tables;

iii) select * from tables;

9.2 NODES Table
The NODES table contains a list of the nodes in the RapidsDB Cluster. The table below shows the

columns in the NODES table:

RapidsDB Release 4.3.3 User Guide Page 162 © Borrui Data Technology Co. Ltd 2022

Column Name Description

NODE_NAME The name assigned by the user to this node

IS_DQC Set to ‘true’ if this node is the DQC node, otherwise set to false

HOSTNAME The host name or ip address for this node

CLIENT_PORT The port number that the wireline protocol is listening on, which will be

used by the RapidsDB Unified JDBC Driver for connecting to the RapidsDB

cluster

CLUSTER_PORT The port number that this node will be listening on

INSTALLATION_DIR The installation directory for the RapidsDB Cluster software

WORKING_DIR The working directory used for the RapidsDB Cluster software

Example:

This example shows a 4 node RapidsDB Cluster with the node having ip address 192.168.1.98 being

assigned the node name “DB1” and acting as the DQC node. The other node is a DQE node.

9.3 FEDERATIONS Table
The FEDERATIONS table contains a list of the Federations in the RapidsDB Cluster. The table below

shows the columns in the FEDERATIONS table:

Column Name Description

FEDERATION_NAME The name of the Federation. By default there will always be one Federation

named DEFAULTFED.

IS_DEFAULT Set to ‘true’ if this is the default Federation, otherwise set to false

Example:

RapidsDB Release 4.3.3 User Guide Page 163 © Borrui Data Technology Co. Ltd 2022

9.4 CONNECTORS Table
The CONNECTORS table contains a list of the Connectors in the RapidsDB Cluster. The table below shows

the columns in the CONNECTORS table:

Column Name Description

FEDERATION_NAME The name that of the Federation that this Connector belongs to

CONNECTOR_NAME The name of the Connector

CONNECTOR_TYPE The type of Connector, such as IMPEX, METADATA, MOXE or MYSQL

CONNECTOR_DDL The CREATE CONNECTOR command that was used to create this Connector

IS_ENABLED Set to ‘true’ if the Connector is enabled, otherwise it is set to false

The query below shows the sample output for querying this table:

In this example there are 3 Connectors in the DEFAULTFED Federation:

1. METADATA – manages the metadata for the DEFAULTFED Federation.

2. PARQSF10 – a Hadoop Connector

3. MOXE1 – a MOXE Connector

9.5 CATALOGS Table
The CATALOGS table contains a list of the catalogs in the current Federation. The table below shows the

columns in the CATALOGS table:

RapidsDB Release 4.3.3 User Guide Page 164 © Borrui Data Technology Co. Ltd 2022

Column Name Description

CATALOG_NAME The name of the catalog

The query below shows the sample output for querying this table:

In this example there are 3 catalogs:

1. MOXE_1 – this is the catalog for MOXE Connector named “MOXE_1”

2. MYSQL_A – this is the catalog for the MemSQL Connector named “MEM1”

3. RAPIDS – this is the catalog for the METADATA Connector

9.6 SCHEMAS Table
The SCHEMAS table contains a list of the schemas in the current Federation. The table below shows the

columns in the SCHEMAS table:

Column Name Description

CATALOG_NAME The name of the catalog

SCHEMA_NAME The name of the schema

The query below shows the sample output for querying this table:

In this example there are 3 schemas:

1. MOXE_1 – this is the schema for the MOXE Connector, “MOXE_1”

2. CUSTOMER – this is the schema for the MySQL Connector, “MYSQL_A”

3. SYSTEM – this is the schema for the Metadata Connector

RapidsDB Release 4.3.3 User Guide Page 165 © Borrui Data Technology Co. Ltd 2022

9.7 TABLES Table
The TABLES table contains a list of the tables that can be accessed from the current Federation. The

table below shows the columns in the TABLES table:

Column Name Description

CATALOG_NAME The name of the catalog for this table

SCHEMA_NAME The name of the schema for this table

TABLE_NAME The name of the table

IS_PARTITIONED Set to ‘true’ if this table is partitioned, otherwise it is set to false

COMMENT Comment for the table, if any

PROPERTIES Indicates any properties associated with the table, such as the HDFS path

name for tables managed by a Hadoop Connector

Example:

The following example shows tables from a MySQL database where there are comments on the columns

and tables:

rapids > select * from tables where schema_name='test';

CATALOG_NAME SCHEMA_NAME TABLE_NAME IS_PARTITIONED COMMENT

PROPERTIES

test test COMMENTS false Test table for

comments NULL

test test TESTING01 false NULL

NULL

test test dctest false This is a test

table for comments NULL

3 row(s) returned (0.05 sec)

9.8 INDEXES Table
The INDEXES table contains a list of the tables that can be accessed from the current Federation. The

table below shows the columns in the INDEXES table:

Column Name Description

CATALOG_NAME The name of the catalog for this table

RapidsDB Release 4.3.3 User Guide Page 166 © Borrui Data Technology Co. Ltd 2022

SCHEMA_NAME The name of the schema for this table

TABLE_NAME The name of the table

INDEX_NAME The name of the index

IS_UNIQUE true if the index is unique

IS_PRIMARY true if the index is the primary key

INDEX_TYPE The type of index

ORDINAL The position of the column in the index

COLUMN_NAME The column name

The example output below shows the index metadata for indexes defined on tables in MemSQL:

rapids > select * from indexes;

CATALOG_NAME SCHEMA_NAME TABLE_NAME INDEX_NAME IS_UNIQUE IS_PRIMARY INDEX_TYPE ORDINAL COLUMN_NAME

MEMSQL TPCH LINEITEM

PRIMARY true

true TREE

1 L_ORDERKEY

MEMSQL TPCH LINEITEM PRIMARY true true TREE 2 L_LINENUMBER

MEMSQL TPCH LINEITEM li_com_dt_idx false false TREE 1 L_COMMITDATE

MEMSQL TPCH LINEITEM li_rcpt_dt_idx false false TREE 1 L_RECEIPTDATE

MEMSQL TPCH LINEITEM li_shp_dt_idx false false TREE 1 L_SHIPDATE

MEMSQL TPCH LINEITEM lineitem_fk1 false false TREE 1 L_ORDERKEY

MEMSQL TPCH LINEITEM lineitem_fk2 false false TREE 1 L_SUPPKEY

MEMSQL TPCH LINEITEM lineitem_fk3 false false TREE 1 L_PARTKEY

MEMSQL TPCH LINEITEM lineitem_fk3 false false TREE 2 L_SUPPKEY

MEMSQL TPCH LINEITEM lineitem_fk4 false false TREE 1 L_PARTKEY

9.9 COLUMNS Table
The COLUMNS table contains a list of the columns for all of the tables that can be accessed in the

current Federation. The table below shows the columns in the COLUMNS table:

Column Name Description

CATALOG_NAME The name of the catalog for this table

SCHEMA_NAME The name of the schema for this table

TABLE_NAME The name of the table

COLUMN_NAME The name of the column

DATA_TYPE The data type for the column

ORDINAL The column number (one-based)

RapidsDB Release 4.3.3 User Guide Page 167 © Borrui Data Technology Co. Ltd 2022

IS_PARTITION_KEY Set to ‘true’ if this column part of the partition (shard) key

IS_NULLABLE True if the column is nullable

PRECISION Precision for numerical columns

PRECISION_RADIX If data_type identifies a numeric type, this column indicates in which base

the values in the columns numeric_precision and numeric_scale are

expressed. The value is either 2 or 10 as follows:

INTEGER, FLOAT: 2

DECIMAL: 10

PRECISION_SCALE Scale for decimal and float columns

CHARACTER_SET Character set for column

COLLATION Not used

COMMENT Column comment

PROPERTIES Properties associated with column

Example 1:

This example shows the column definition for the TPC-H “ORDERS” table:

rapids > select * from columns where table_name='ORDERS';

MOXE MOXE ORDERS O_CUSTKEY INTEGER

1 false false 64 2 NULL NULL

NULL NULL serial:Kind=integer64

MOXE MOXE ORDERS O_ORDERSTATUS VARCHAR

2 false true NULL NULL NULL

UTF16 BINARY NULL serial:Kind=stringRA2

MOXE MOXE ORDERS O_TOTALPRICE DECIMAL

3 false true 17 10 2 NULL

NULL NULL serial:Kind=decimal64

CATALOG_NAME SCHEMA_NAME

ORDINAL IS_PARTITION_KEY

TABLE_NAME

IS_NULLABLE

COMMENT

COLUMN_NAME DATA_TYPE

PRECISION PRECISION_RADIX

PROPERTIES SCALE CHARACTER_SET COLLATION

-

MOXE

0

NULL

MOXE

true

NULL

ORDERS

false

O_ORDERKEY

64

INTEGER

2 NULL NULL

serial:Kind=integer64

RapidsDB Release 4.3.3 User Guide Page 168 © Borrui Data Technology Co. Ltd 2022

MOXE

4

MOXE

false

ORDERS

true

O_ORDERDATE

NULL

DATE

NULL

NULL

NULL

NULL NULL serial:Kind=timestamp

MOXE

5

UTF16

MOXE

6

UTF16

MOXE

7

MOXE

false

BINARY

MOXE

false

BINARY

MOXE

false

ORDERS O_ORDERPRIORITY

true NULL

NULL serial:Kind=stringRA2

ORDERS O_CLERK

true NULL

NULL serial:Kind=stringRA2

ORDERS O_SHIPPRIORITY

true 64

VARCHAR

NULL

VARCHAR

NULL

INTEGER

2

NULL

NULL

NULL NULL

NULL NULL serial:Kind=integer64

MOXE

8

UTF16

MOXE

false

BINARY

ORDERS O_COMMENT

true NULL

NULL serial:Kind=stringRA2

VARCHAR

NULL

NULL

9 row(s) returned (0.05 sec)

Example 2

This example shows a table with column comments:

rapids > select * from columns where table_name='COMMENTS';

CATALOG_NAME SCHEMA_NAME TABLE_NAME COLUMN_NAME DATA_TYPE

ORDINAL IS_PARTITION_KEY IS_NULLABLE PRECISION PRECISION_RADIX

SCALE CHARACTER_SET COLLATION COMMENT PROPERTIES

test test COMMENTS C1 INTEGER

0 false true 64 2

NULL NULL NULL Integer column NULL

test test COMMENTS C2 DECIMAL

1 false true 15 10

2 NULL NULL decimal column NULL

test test COMMENTS C3 FLOAT

2 false true 53 2

NULL NULL NULL float column NULL

3 row(s) returned (0.05 sec)

9.10 TABLE_PROVIDERS Table
The table below shows the columns in the TABLE_PROVIDERS table:

Column Name Description

RapidsDB Release 4.3.3 User Guide Page 169 © Borrui Data Technology Co. Ltd 2022

CATALOG_NAME The name of the catalog for this table

SCHEMA_NAME The name of the schema for this table

TABLE_NAME The name of the table

CONNECTOR_NAME The name of the Connector that is managing access to this table

9.11 AUTHENTICATORS Table
The table below shows the columns in the AUTHENTICATORS table:

Column Name Description

AUTHNAME The name of the authenticator instance.

TYPE The name of the type of authenticator.

ENABLED Whether the authenticator is enabled or disabled.

DDL The DDL string to recreate this authenticator.

rapids > select * from authenticators;

AUTHNAME TYPE ENABLED DDL

-------- ---- ------- ---

RDPAUTH RDP true CREATE AUTHENTICATOR RDPAUTH TYPE RDP ;

RapidsDB Release 4.3.3 User Guide Page 170 © Borrui Data Technology Co. Ltd 2022

9.12 AUTHENTICATOR_CONFIG Table
The table below shows the columns in the AUTHENTICATOR_CONFIG table:

Column Name Description

AUTHNAME The name of the authenticator instance.

KEY The name of the custom property for this authenticator instance.

VALUE The value of the custom property for this authenticator instance.

rapids > select * from authenticator_config;

AUTHNAME

KEY

 VALUE

RDPAUTH rdp.authenticator.name RDPAUTH

RDPAUTH rdp.authenticator.type RDP

KRB REALM HOME

KRB rdp.authenticator.name KRB

KRB rdp.authenticator.type KERBEROS

9.13 USERS Table
The table below shows the columns in the USERS table:

Column Name Description

USERNAME The unique name of the user.

ENABLED Whether the user is enabled or disabled.

AUTHNAME The name of the authenticator instance this user is associated with.

9.14 USER_CONFIG Table
The table below shows the columns in the USER_CONFIG table:

KRB KERBEROS true CREATE AUTHENTICATOR KRB TYPE KERBEROS WITH REALM = 'HOME';

rapids > select * from users;

USERNAME ENABLED AUTHNAME

CRAIG

RAPIDS

john

true KRB

true RDPAUTH

true RDPAUTH

RapidsDB Release 4.3.3 User Guide Page 171 © Borrui Data Technology Co. Ltd 2022

Column Name Description

USERNAME The username.

KEY The name of the custom property for this authenticator instance.

VALUE The value of the custom property for this authenticator instance.

9.15 SESSIONS Table
The table below shows the columns in the SESSIONS table:

Column Name Description

SESSION_ID The unique name of the session across the cluster.

USERNAME The username that the client has authenticated as, or null.

NODE The node that the client connected to.

CLIENT_IP The IP address of the client.

CLIENT_PORT The port address that the client is connecting from.

SERVER_PORT The port address that the client is connected to.

ESTABLISHED The timestamp when the client first connected.

9.16 USERNAME_MAPS Table
The table below shows the columns in the USERNAME_MAPS table:

Column Name Description

ID The external identifier to map from.

USERNAME The RapidsDB username to map this external identifier to.

rapids > select * from user_config;

USERNAME KEY VALUE

-------- --- -----

CRAIG PRINCIPAL craig@HOME

rapids > select * from sessions;

SESSION_ID USERNAME NODE CLIENT_IP CLIENT_PORT SERVER_PORT ESTABLISHED

S1@NODE1 RAPIDS NODE1 127.0.0.1 50547 4333 2019-04-18 07:00:22.376

RapidsDB Release 4.3.3 User Guide Page 172 © Borrui Data Technology Co. Ltd 2022

9.17 PATTERN_MAPS Table
The table below shows the columns in the PATTERN_MAPS table:

Column Name Description

PRIORITY The order in which the pattern mapping is tried (highest first).

SEARCH The pattern to test against the external user ID.

REPLACE The replacement pattern to be applied against the external user ID in

conjunction with the search pattern.

9.18 QUERIES Table
The table below shows the columns in the QUERIES table:

Column Name Description

QUERY_ID The query id

SESSION_ID The session id where this query is running

NODE The RapidsDB node where the query was started

USERNAME The name of the user running this query

START_TIME The timestamp when the query was started

QUERY_TEXT The SQL query

When querying the QUERIES table, only the queries submitted by the current user will be displayed

unless the userid is “RAPIDS” in which case the queries for all users will be displayed.

Example:

rapids > select * from username_maps;

rapids > select * from pattern_maps;

PRIORITY SEARCH REPLACE

-------- ------ -------

100 ^(.+)/admin@COMPANY.COM$ ADMIN

90 ^(.+?)(/[^@]*)?@COMPANY.COM$ $1

80 ^(.+?)(/[^@]*)?@EXAMPLE.COM$ $1_EXAMPLE

ID USERNAME

-- --------

craig@HOME CRAIG

RapidsDB Release 4.3.3 User Guide Page 173 © Borrui Data Technology Co. Ltd 2022

Below is a query submitted from the rapids-shell:

Below is the content of the QUERIES table while this query is running:

10 Cancelling a Query
There are three ways that an active query can be cancelled as explained in the following sections.

10.1 rapids-shell
If the query was started from the rapids-shell then the user can enter Ctrl-k from the rapids-shell

window where the query is running. This will result in a message being sent to RapidsDB to cancel the

query currently running on that connection. This requires rapids-shell version 4 and the RapidsDB JDBC

Driver version 4, both of which are included with this release.

Example:

Checking the QUERIES table from another window shows this query running:

RapidsDB Release 4.3.3 User Guide Page 174 © Borrui Data Technology Co. Ltd 2022

Press Ctrl-K:

Checking the QUERIES table shows this query no longer running:

10.2 JDBC
Programmatically via the RapidsDB JDBC Driver using the Statement.cancel() interface:

• When a Statement instance is being executed, a second thread can call the cancel() method on it.

This will cause the JDBC driver to create a temporary connection to the server, authenticate and

issue a query cancellation. When the query is cancelled, the execution of the Statement object will

return with a JDBC SqlException indicating that the query was cancelled.

• The call to Statement.cancel() will return once the cancellation request has been submitted to
RapidsDB. This is not necessarily the same time that the cancelled query actually exits early.

• If Statement.cancel() is called on a statement that has already completed or hasn’t been executed in
RapidsDB yet then an error is returned to the caller.

• Requires RapidsDB JDBC driver version 4.

10.3 CANCEL QUERY command
Using the SQL command CANCEL QUERY.

The syntax for the CANCEL QUERY command is:

• The <queryId> can be found from the QUERIES metadata table (see 9.18).

CANCEL QUERY [IF EXISTS] <queryId>;

RapidsDB Release 4.3.3 User Guide Page 175 © Borrui Data Technology Co. Ltd 2022

• Queries can be cancelled on remote nodes as well as the local node.
• Only the user that initiated the query can cancel the query, unless the user is the RAPIDS user in

which case that user can cancel any query

Example:
Example: In the example below the query is initiated on Session 1, and then cancelled from a

different session, Session 2.

Session 1:

Session 2 – from another session, list the currently active queries and then cancel the query

started from session 1:

Session 1 – this is the exception returned on session 1 after the query is cancelled:

RapidsDB Release 4.3.3 User Guide Page 176 © Borrui Data Technology Co. Ltd 2022

11 Performance Tuning

11.1 EXPLAIN
EXPLAIN instructs the rapids-shell to output a schematic representation of the query plan for the

associated statement, including the SQL queries that will be sent to the underlying Data Store and the

internal operators and routing for operations that will be performed by the RapidsDB Execution Engine.

Syntax:

Example 1 – simple select

Example 2 – 1-way join

11.2 JOIN Order
For SELECT statements with JOINs the user should order the tables in the query from left to right so that

the table with the smallest number of rows, given the supplied WHERE clause predicates, is to the left

and the table with the largest number of rows is the last table. For example, with the following query:

EXPLAIN <SQL statement>

RapidsDB Release 4.3.3 User Guide Page 177 © Borrui Data Technology Co. Ltd 2022

If the rows returned from the customer table are the smallest and the rows returned from the lineitem

table are the largest, then the query should be changed to the following in order to achieve the best

query performance:

11.3 Restrict Amount of Data
Care should be taken to restrict the amount of data in JOINs by using the appropriate predicates in the

WHERE clause. Failure to do this could result in too much data being requested from the Data Store

SELECT l_orderkey,

SUM(l_extendedprice) AS revenue,

o_orderdate,

o_shippriority

FROM lineitem

join orders

ON l_orderkey = o_orderkey

join customer

ON c_custkey = o_custkey

WHERE c_mktsegment = 'FURNITURE'

AND o_orderdate < '2014-05-01 12:00:00'

AND l_shipdate > '2014-04-01 12:00:00'

GROUP BY l_orderkey,

o_orderdate,

o_shippriority;

SELECT l_orderkey,

SUM(l_extendedprice) AS revenue,

o_orderdate,

o_shippriority

FROM customer

join orders

ON c_custkey = o_custkey

join lineitem

ON l_orderkey = o_orderkey

WHERE c_mktsegment = 'FURNITURE'

AND o_orderdate < '2014-05-01 12:00:00'

AND l_shipdate > '2014-04-01 12:00:00'

GROUP BY l_orderkey,

o_orderdate,

o_shippriority;

RapidsDB Release 4.3.3 User Guide Page 178 © Borrui Data Technology Co. Ltd 2022

which could cause one or more of the DQE nodes to fail due to exhausting their heaps. In the previous

example, the timestamps in the WHERE clause should be further restricted, for example:

12 Managing RapidsDB

12.1 Command-line Interface: rapids-shell
The command-line interface to RapidsDB is provided through the rapids-shell.

12.2 Running the rapids-shell

12.2.1 Running the RapidsDB shell Locally

The RapidsDB shell, rapids-shell.sh, can be run from any node in the RapidsDB Cluster, and is run from

the RapidsDB cluster installation directory (eg /opt/rdp/current):

1. cd /opt/rdp/current

2. ./rapids-shell.sh

You will be prompted for a username and password before seeing the rapids prompt:

3. You should then be able to execute SQL queries or any of the supported rapids-shell command

(refer to the Rapids-shell User Guide for more details). For example:

12.2.2 Running the RapidsDB shell Remotely

The rapids-shell can also be run remotely from any node that has TCP/IP connectivity to the RapidsDB

Cluster. To install the rapids-shell on a remote system use the following steps:

WHERE c_mktsegment = 'FURNITURE'

AND o_orderdate < '2014-05-01 12:00:00'

AND o_orderdate > '2014-04-01 12:00:00'

AND l_shipdate < '2014-05-01 12:00:00'

AND l_shipdate > '2014-04-01 12:00:00'

rapids@db01:/opt/rdp/current$./rapids-shell.sh

Please enter a username > rapids

Please enter the password for user 'RAPIDS' >

rapids >

RapidsDB Release 4.3.3 User Guide Page 179 © Borrui Data Technology Co. Ltd 2022

1. Copy the rapids-shell-<version>.zip file from the 'shell' directory located in the RapidsDB

installation directory on any node in the RapidsDB Cluster to the target system

2. Unzip the rapids-shell-<version>.zip file

3. The rapids-shell can then be started by running either the rapids-shell.sh file on Linux or the

rapids-shell.bat file on Windows.

4. Refer to the Rapids-shell User Guide for more information.

12.2.3 Authentication of the RapidsDB shell

When the RapidsDB shell is started normally it will interactively ask for the username and password to

be used for authentication. When entering the username interactively, rapids-shell will treat the name

like a SQL object identifier by folding the name to uppercase unless it is surrounded by double quotes, in

which case the case will be preserved. Care must be taken if case-sensitive usernames are used.

The password being entered will be treated as case sensitive and does not require any quoting.

To avoid being prompted to enter a username and password when invoking rapids-shell, simply define

the following shell or environment variables when starting rapids-shell:

• RDP_USERNAME

• RDP_PASSWORD

Shell variables can be defined on the same line used to invoke the rapids-shell. They will only exist for

the rapids-shell process.

Example 1:

Alternatively, the variables can be exported to be environment variables before the rapids-shell is

invoked.

Example 2:

$ RDP_USERNAME=rapids RDP_PASSWORD=rapids ./rapids-shell.sh

rapids > select current_user from tables limit 1;

?1

--

RAPIDS

1 row(s) returned (0.02 sec)

RapidsDB Release 4.3.3 User Guide Page 180 © Borrui Data Technology Co. Ltd 2022

When defining the shell or environment variables for the username, please note that it will be treated

the same as if it was entered interactively. i.e., unquoted usernames will be folded to uppercase.

However, entering double quotes around a shell/environment variable is not as straight forward as it

seems because the unix shell will first interpret the quotes and remove them before they are seen by

the rapids-shell. As a result, the double quotes need to be escaped by single quotes that will be removed

by the unix shell.

Example 3:

Please refer to the Rapids-shell User Guide for more details.

To use Kerberos authentication with the RapidsDB shell, please refer to the Rapids-shell User Guide for

details.

12.2.4 Cancelling Queries

There are two ways that a query can be cancelled from the rapids-shell:

1. Ctrl-k - A long running query that was executed via rapids-shell can be interrupted by pressing

Control-K. This will send a message to RapidsDB on a new connection to cancel the long running

query, and return control to the user.

Example:

$ export RDP_USERNAME=rapids

$ export RDP_PASSWORD=rapids

$./rapids-shell.sh

rapids > select current_user from tables limit 1;

?1

--

RAPIDS

1 row(s) returned (0.02 sec)

$ export RDP_USERNAME='"john"'

double quotes.

$ export RDP_PASSWORD=john

$./rapids-shell.sh

 note outer single quotes and inner

rapids > select current_user from tables limit 1;

?1

--

john note case sensitive name.

1 row(s) returned (0.02 sec)

RapidsDB Release 4.3.3 User Guide Page 181 © Borrui Data Technology Co. Ltd 2022

Press Ctrl-k:

2. Using the CANCEL QUERY command

The syntax for the CANCEL QUERY command is:

• The <queryId> can be found from the QUERIES metadata table (see the RapidsDB User
Guide for more information on the QUERIES table).

• Queries can be cancelled on remote nodes as well as the local node.

Example: In the example below the query is initiated on Session 1, and then cancelled from a

different session, Session 2.

Session 1:

rapids > select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as

sum_base_price,

> sum(l_extendedprice*(1-l_discount)) as sum_disc_price, sum(l_extendedprice*(1-

l_discount)*(1+l_tax)) as sum_charge,

> avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as

avg_disc, count(*) as count_order

> from LINEITEM

> where l_shipdate <= timestamp '1998-12-01 00:00:00' - interval '90' day

> group by l_returnflag, l_linestatus

> order by l_returnflag, l_linestatus;

[CANCELLING QUERY]

Cancellation of query SSN_1@RDP1#33 requested.

java.sql.SQLException: System exception:

com.rapidsdata.common.exceptions.RdpRemoteException:

com.rapidsdata.plan.exceptions.ExecCanceledException: Canceled locus=RDP1

CANCEL QUERY [IF EXISTS] <queryId>;

RapidsDB Release 4.3.3 User Guide Page 182 © Borrui Data Technology Co. Ltd 2022

Session 2:

Session 1 – indicates that the query is cancelled:

12.3 Adding Authenticators – CREATE AUTHENTICATOR

12.3.1 Overview

The CREATE AUTHENTICATOR command is used to add a new authenticator instance to the system.

Authenticators exist across all federations. The general format for the CREATE AUTHENTICATOR

SSN_1@RDP1#32 SSN_1@RDP1 RDP1 RAPIDS 2020-07-30 21:17:09.838 select l_returnflag,

l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price,

sum(l_extendedprice*(1-l_discount)) as sum_disc_price, sum(l_extendedprice*(1-

l_discount)*(1+l_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice) as

avg_price, avg(l_discount) as avg_disc, count(*) as count_order from LINEITEM where l_shipdate

<= timestamp '1998-12-01 00:00:00' - interval '90' day group by l_returnflag, l_linestatus order by

l_returnflag, l_linestatus;

2 row(s) returned (0.21 sec)

rapids > cancel query SSN_1@RDP1#32 ;

0 row(s) returned (0.70 sec)

rapids > select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as

sum_base_price,

> sum(l_extendedprice*(1-l_discount)) as sum_disc_price, sum(l_extendedprice*(1-

l_discount)*(1+l_tax)) as sum_charge,

> avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as

avg_disc, count(*) as count_order

> from LINEITEM

> where l_shipdate <= timestamp '1998-12-01 00:00:00' - interval '90' day

> group by l_returnflag, l_linestatus

> order by l_returnflag, l_linestatus;

rapids > select * from queries;

QUERY_ID SESSION_ID NODE USERNAME START_TIME QUERY_TEXT

SSN_3@RDP1#7 SSN_3@RDP1 RDP1 RAPIDS 2020-07-30 21:17:11.608 select * from

queries;

[CANCELED]

rapids>

RapidsDB Release 4.3.3 User Guide Page 183 © Borrui Data Technology Co. Ltd 2022

command is:

CREATE AUTHENTICATOR

[IF NOT EXISTS]

<name>

TYPE <type>

[SET [ENABLED | DISABLED]]

[WITH <key> = '<value>' [, …]] ;

RapidsDB will start with an internal authenticator already existing that can authenticate username and

password credentials. This internal authenticator cannot be created or dropped. The CREATE

AUTHENTICATOR command supports authenticators of these additional types:

• kerberos

The Kerberos authenticator is able to authenticate Kerberos principals.

Support for additional authenticator types (e.g. LDAP) will be added in the future.

When creating an authenticator, the name of the authenticator instance must be unique in the cluster.

If an authenticator is created in the disabled state then any users associated with this authenticator will

not be able to login.

The WITH clause is used to specify authenticator-specific options, in key-value pairs. Some authenticator

types may require extra information to be specified when they are created. Values in these key-value

pairs are typically specified as single quoted strings to preserve case. Keys are often unquoted. Keys and

values can also be unquoted so long as they don’t contain spaces or other special characters, however

unquoted keys and values will be folded to uppercase in accordance with RapidsDB’s SQL object

identifier handling.

Example:

12.3.2 Creating a Kerberos Authenticator

Kerberos authenticators require additional information to be created successfully. Specifically, a

Kerberos authenticator needs to know:

1. The name of the RapidsDB service principal for each node.

2. The path to the keytab file for this service principal.

This information applies to each node in the RapidsDB Cluster. How this information is specified is

detailed below.

12.3.2.1 Specifying the Service Principal

rapids > create authenticator krb type kerberos with realm = 'RDP.COM';

0 row(s) returned (0.10 sec)

RapidsDB Release 4.3.3 User Guide Page 184 © Borrui Data Technology Co. Ltd 2022

The service principal can be specified in the following ways:

1. By providing a local file on each node in the cluster that contains the name of the service

principal for that particular node. RapidsDB will look for this file in the path

../rdp.principal relative to the installation directory that RapidsDB executes in.

2. By providing a custom property in the WITH clause of the CREATE AUTHENTICATOR statement

that specifies the pattern of the service principal:

CREATE AUTHENTICATOR … WITH principal_pattern = '<pattern_string>' ;

The <pattern_string> must contain the fully qualified principal including realm. Since this

<pattern_string> is applied to all nodes in the cluster the escape sequence \H can be used

to insert the fully qualified hostname of the current node (as displayed by the output of the

terminal command hostname -f).

Example:

On a node with a fully qualified hostname of myNode.myDomain, this principal pattern would

be turned into a service principal of: rapidsdb/myNode.myDomain@EXAMPLE.COM

3. By providing a custom property that specifies the Kerberos realm in the WITH clause of a

CREATE AUTHENTICATOR statement, and letting RapidsDB fill in the service name and host

parts of the principal. E.g.:

Example:

rapids > create authenticator krb type kerberos with

principal_pattern = 'rapidsdb/\H@RDP.COM';

0 row(s) returned (0.33 sec)

rapids > select * from authenticators;

AUTHNAME TYPE ENABLED DDL

-------- ---- ------- ---

KRB KERBEROS true CREATE AUTHENTICATOR KRB TYPE

KERBEROS WITH PRINCIPAL_PATTERN = 'rapidsdb/\H@RDP.COM';

RDPAUTH

RDP ;

RDP true CREATE AUTHENTICATOR RDPAUTH TYPE

2 row(s) returned (0.57 sec)

mailto:rapidsdb/myNode.myDomain@EXAMPLE.COM

RapidsDB Release 4.3.3 User Guide Page 185 © Borrui Data Technology Co. Ltd 2022

When only the realm is provided the service principal for any given node will be formed using

the pattern:

'rdp/<fully_qualified_host_name>@<realm>'

where <fully_qualified_host_name> is the name of the node including its domain name

(e.g. refer to the output of the shell command hostname -f). E.g. On a node with a fully

qualified hostname of myNode.myDomain, this principal pattern would be turned into a service

principal of: rdp/myNode.myDomain@EXAMPLE.COM

The Kerberos authenticator will look for service principals on each node in this order:
a. ../rdp.principal file.
b. principal_pattern custom property.
c. realm custom property.

The easiest way to specify the service principal is to specify the realm property when creating the

connector and to ensure that the fully qualified name of each node matches the expected service

principal name.

12.3.2.2 Specifying the Keytab file

By default, the Kerberos authenticator will look for a keytab file in the path ../rdp.keytab (relative to

the RapidsDB installation directory) on each node in the RapidsDB Cluster

The keytab path can be overridden by specifying a custom property in the WITH clause when creating

the authenticator.

Example:

rapids > create authenticator krb type kerberos with realm =

'RDP.COM';

0 row(s) returned (0.05 sec)

rapids > select * from authenticators;

AUTHNAME TYPE ENABLED DDL

-------- ---- ------- ---

KRB KERBEROS true CREATE AUTHENTICATOR KRB TYPE

KERBEROS WITH REALM = 'RDP.COM';

RDPAUTH

RDP ;

RDP true CREATE AUTHENTICATOR RDPAUTH TYPE

2 row(s) returned (0.64 sec)

mailto:rdp/myNode.myDomain@EXAMPLE.COM

RapidsDB Release 4.3.3 User Guide Page 186 © Borrui Data Technology Co. Ltd 2022

The keytab file must exist in this path on each node in the cluster.

12.4 Dropping Authenticators – DROP AUTHENTICATOR
The DROP AUTHENTICATOR command is used to remove an instance of an authenticator from the

system. The syntax for dropping an authenticator is:

DROP AUTHENTICATOR [IF EXISTS] <name> [KEEPING USERS] ;

By default, when an authenticator is dropped all users that are associated with that authenticator are

also dropped, unless the KEEPING USERS clause is specified. In that case all associated user accounts

are kept but those users will not be able to login because their accounts refer to an authenticator that

now does not exist. If a new authenticator is created with the same name then those user accounts will

try to use that new authenticator. Alternatively, the user accounts can be altered to associated them

with a different authenticator.

It is not possible to drop the internal authenticator.

Example:

rapids > create authenticator krb type kerberos with keytab =

'/home/rapids/rdptest/r4/rdp.keytab', realm = 'RDP.COM';

0 row(s) returned (0.04 sec)

rapids > select * from authenticators;

AUTHNAME TYPE ENABLED DDL

-------- ---- ------- ---

KRB KERBEROS true CREATE AUTHENTICATOR KRB TYPE KERBEROS

WITH KEYTAB = '/home/rapids/rdptest/r4/rdp.keytab', REALM = 'RDP.COM';

RDPAUTH

;

RDP true CREATE AUTHENTICATOR RDPAUTH TYPE RDP

2 row(s) returned (0.77 sec)

RapidsDB Release 4.3.3 User Guide Page 187 © Borrui Data Technology Co. Ltd 2022

12.5 Altering Authenticators – ALTER AUTHENTICATOR
The ALTER AUTHENTICATOR command is used to change some properties of an authenticator instance

that already exists. The syntax for altering an authenticator is:

ALTER AUTHENTICATOR <name>

[SET [ENABLED | DISABLED]]

[WITH <key> = <value>, …] ;

An authenticator can be altered to enable or disable it. When an authenticator is disabled it will deny

authentication to any user associated with this authenticator that tries.

The ALTER AUTHENTICATOR command can also be used to change the custom properties that are

associated with an authenticator instance. When the WITH clause is specified in an ALTER

AUTHENTICATOR statement, any previous keys and values will be discarded and replaced by the new

set of keys and values.

Values in these key-value pairs are typically specified as single quoted strings to preserve case. Keys are

often unquoted. Keys and values can also be unquoted so long as they don’t contain spaces or other

rapids > create authenticator krb type kerberos with keytab =

'/home/rapids/rdptest/r4/rdp.keytab', realm = 'RDP.COM';

0 row(s) returned (0.04 sec)

rapids > select * from authenticators;

AUTHNAME TYPE ENABLED DDL

-------- ---- ------- ---

KRB KERBEROS true CREATE AUTHENTICATOR KRB TYPE KERBEROS

WITH KEYTAB = '/home/rapids/rdptest/r4/rdp.keytab', REALM = 'RDP.COM';

RDPAUTH

;

RDP true CREATE AUTHENTICATOR RDPAUTH TYPE RDP

2 row(s) returned (0.77 sec)

rapids > drop authenticator krb;

0 row(s) returned (0.03 sec)

rapids > select * from authenticators;

AUTHNAME TYPE ENABLED DDL

RDPAUTH RDP true CREATE AUTHENTICATOR RDPAUTH TYPE RDP ;

1 row(s) returned (0.58 sec)

RapidsDB Release 4.3.3 User Guide Page 188 © Borrui Data Technology Co. Ltd 2022

special characters, however unquoted keys and values will be folded to uppercase in accordance with

the rules for SQL identifiers.

It is not possible to change an authenticator’s type with an ALTER AUTHENTICATOR statement. Instead,

the authenticator must first be dropped and a new one created. Similarly, it is also not possible to

change the name of an authenticator with an ALTER AUTHENTICATOR statement.

Example:

rapids > create authenticator krb type kerberos with realm =

'RDP.COM';

0 row(s) returned (0.06 sec)

rapids > select * from authenticators;

AUTHNAME TYPE ENABLED DDL

-------- ---- ------- ---

KRB KERBEROS true CREATE AUTHENTICATOR KRB TYPE KERBEROS

WITH REALM = 'RDP.COM';

RDPAUTH RDP true CREATE AUTHENTICATOR RDPAUTH TYPE RDP

;

2 row(s) returned (0.68 sec)

rapids > alter authenticator krb set disabled;

0 row(s) returned (0.03 sec)

rapids > select * from authenticators;

AUTHNAME TYPE ENABLED DDL

-------- ---- ------- ---

KRB KERBEROS false CREATE AUTHENTICATOR KRB TYPE KERBEROS

SET DISABLED WITH REALM = 'RDP.COM';

RDPAUTH RDP true CREATE AUTHENTICATOR RDPAUTH TYPE RDP

;

2 row(s) returned (1.73 sec)

12.6 Adding Users – CREATE USER
The CREATE USER command is used to add new user accounts into RapidsDB. Users exist across all

federations. The syntax of the CREATE USER command is:

CREATE USER

[IF NOT EXISTS]

<username>

[AUTH <authenticator_name>]

[PASSWORD '<password>']

[SET [ENABLED | DISABLED]]

[WITH <key> = <value> [, …]] ;

RapidsDB Release 4.3.3 User Guide Page 189 © Borrui Data Technology Co. Ltd 2022

When creating users, the username must be unique within the cluster. The username follows standard

SQL identifier rules in that it will be folded to uppercase unless it is double quoted to preserve case

sensitivity.

If an authenticator name is not specified then the user will be created to use the internal RDP

authenticator, which requires users to authenticate with a username and password.

The password field is only applicable if the authenticator type requires a password. E.g. Kerberos

authentication does not use a password, so it would be an error to specify a password if a Kerberos

authenticator was also specified. Users that are created with the internal authenticator must set a

password when the user is created.

The WITH clause is used to specify user-specific options, in key-value pairs. These options may be used

by the authenticator to affect how it does its authentication. An example is that a user could be created

that uses an external authentication system (e.g. Kerberos or LDAP) and the WITH clause is used to

specify the external identifier used by the external authentication system for this RapidsDB user. The

authenticator can make use of this to set up an automatic mapping from the external user identifier to

the RapidsDB username so that when the client connects they only need to specify either the external

identifier or their RapidsDB username, not both.

Example:

12.6.1 Adding Kerberos Users

When a client connects to RapidsDB and wishes to connect with Kerberos, that client will typically

supply the Kerberos principal to be authenticated as but not the RapidsDB username. RapidsDB needs to

find the username associated with this Kerberos principal by using username mapping or pattern

mapping. This mapping can be created by hand or it can be done automatically if the correct option is

given when the user is created.

To create a RapidsDB user that uses a Kerberos authenticator and have the mapping between the user’s

Kerberos principal and their RapidsDB username automatically set up, simply ensure that you specify the

user’s principal in the WITH clause as follows:

CREATE USER <username>

TYPE <kerberos_authenticator_name>

WITH principal = '<kerberos_principal>' ;

When RapidsDB sees that this principal key has been set and the user is associated with a Kerberos

authenticator then it will automatically add a mapping from the Kerberos principal specified to the

username. This can be seen by querying the username_maps metadata table after the user has been

created.

rapids > create user john password 'john';

0 row(s) returned (0.42 sec)

RapidsDB Release 4.3.3 User Guide Page 190 © Borrui Data Technology Co. Ltd 2022

Example:

Example: in this example the user is initially disabled:

12.7 Dropping Users – DROP USER
The DROP USER command is used to remove a user from the system. The syntax for dropping a user is:

DROP USER [IF EXISTS] <username> ;

Dropping a user does not affect the authenticator that the user is associated with (if any).

Currently only the initial RAPIDS user can drop other user accounts. Users can drop themselves though.

If a mapping from an external identifier was automatically setup when the user was created (e.g. from

Kerberos principal to the user’s username) then this mapping will also be deleted when the user is

dropped.

Example:

rapids > create authenticator krb type kerberos with realm =

'RDP.COM';

0 row(s) returned (0.32 sec)

rapids > CREATE USER dave AUTH krb WITH PRINCIPAL='dave@RDP.COM';

0 row(s) returned (0.20 sec)

rapids > select * from username_maps;

ID USERNAME

-- --------

dave@RDP.COM DAVE

1 row(s) returned (0.07 sec)

rapids > CREATE USER craig AUTH krb SET DISABLED WITH

PRINCIPAL='craig@RDP.COM';

0 row(s) returned (0.06 sec)

rapids > select * from users where USERNAME='CRAIG';

USERNAME ENABLED AUTHNAME

CRAIG false KRB

1 row(s) returned (0.04 sec)

rapids > select * from users;

USERNAME ENABLED AUTHNAME

CRAIG false KRB

mailto:dave@RDP.COM

RapidsDB Release 4.3.3 User Guide Page 191 © Borrui Data Technology Co. Ltd 2022

12.8 Altering Users – ALTER USER
The ALTER USER command is used to change some properties of an existing user account, such as its

password. The syntax for ALTER USER is:

ALTER USER <username>

[AUTH <authenticator_name>]

[PASSWORD <password>]

[SET [ENABLED | DISABLED]]

[WITH <key> = <value>, …] ;

An existing user account can be altered to change the name of the authenticator that it uses by

specifying the AUTH clause. Specifying a different authenticator name will invalidate any existing custom

keys and values that were previously set in the WITH clause.

If the user account is associated with an authenticator that authenticates with passwords then the

PASSWORD clause can be specified to change it. Specifying the PASSWORD clause when the associated

authenticator does not use passwords (e.g. Kerberos) will result in an error.

Users can also be altered to be enabled or disabled. A disabled user will not be able to authenticate with

RapidsDB.

The ALTER USER command can also be used to change the custom properties that are associated with

the user account. These custom properties can be used by the associated authenticator to control how

they operate when this user is authenticated. When the WITH clause is specified in an ALTER USER

statement, any previous keys and values will be discarded and replaced by the new set of keys and

values.

Values in these key-value pairs are typically specified as single quoted strings to preserve case. Keys are

often unquoted. Keys and values can also be unquoted so long as they don’t contain spaces or other

DAVE

RAPIDS

true KRB

true RDPAUTH

3 row(s) returned (0.02 sec)

rapids > drop user craig;

0 row(s) returned (0.29 sec)

rapids > select * from users;

USERNAME ENABLED AUTHNAME

DAVE

RAPIDS

true KRB

true RDPAUTH

2 row(s) returned (0.50 sec)

RapidsDB Release 4.3.3 User Guide Page 192 © Borrui Data Technology Co. Ltd 2022

special characters, however unquoted keys and values will be folded to uppercase in accordance with

the rules for SQL identifiers.

Example:

12.9 User ID Mapping

12.9.1 Automatic User ID Mapping

If the correct properties and authenticator type are specified when the user is created then a mapping

between an external user identifier and the user’s username will be setup automatically. Similarly, when

this user is dropped or altered then this mapping will be removed. How this external identifier is

specified is dependent on each authenticator type. E.g. refer to section 12.6.1 for a Kerberos example of

this.

These user ID mappings can also be manipulated manually, as explained below.

Example:

12.9.2 Manually Adding a Username Mapping – ADD USERNAME MAPPING

A direct mapping from an external identifier to a RapidsDB username can be manually added with the

command:

rapids > CREATE USER dave AUTH krb WITH PRINCIPAL='dave@RDP.COM';

0 row(s) returned (0.20 sec)

rapids > select * from username_maps;

ID USERNAME

-- --------

dave@RDP.COM DAVE

1 row(s) returned (0.07 sec)

rapids > create user john password 'john';

0 row(s) returned (1.35 sec)

rapids > alter user john password 'new123';

0 row(s) returned (0.33 sec)

rapids > alter user john set disabled;

0 row(s) returned (0.01 sec)

rapids > select * from users where username='JOHN';

USERNAME ENABLED AUTHNAME

JOHN false RDPAUTH

1 row(s) returned (1.22 sec)

mailto:dave@RDP.COM

RapidsDB Release 4.3.3 User Guide Page 193 © Borrui Data Technology Co. Ltd 2022

ADD USERNAME MAPPING '<external_id>' TO <username> ;

This will add a new mapping that is visable in the username_maps metadata table. The external

identifiers are case sensitive, and a new mapping cannot be added if a mapping already exists with this

external identifier.

Example:

12.9.3 Manually Removing a Username Mapping – REMOVE USERNAME MAPPING

A direct mapping from an external identifier to a RapidsDB username can be manually removed with the

command:

REMOVE USERNAME MAPPING '<external_id>' ;

The external identifier is case sensitive.

Example:

rapids > select * from username_maps where username='DAVE';

ID USERNAME

-- --------

dave@RDP.COM DAVE

1 row(s) returned (0.07 sec)

rapids > remove username mapping 'dave@RDP.COM';

0 row(s) returned (0.01 sec)

rapids > select * from username_maps where username='DAVE';

0 row(s) returned (0.78 sec)

rapids > CREATE USER dave AUTH krb;

0 row(s) returned (0.01 sec)

rapids > select * from username_maps;

0 row(s) returned (0.42 sec)

rapids > ADD USERNAME MAPPING 'dave@RDP.COM' TO dave;

0 row(s) returned (0.02 sec)

rapids > select * from username_maps where username='DAVE';

ID USERNAME

-- --------

dave@RDP.COM DAVE

1 row(s) returned (0.07 sec)

mailto:dave@RDP.COM
mailto:dave@RDP.COM

RapidsDB Release 4.3.3 User Guide Page 194 © Borrui Data Technology Co. Ltd 2022

12.9.4 Setting the Pattern Map – SET PATTERN MAP FILE

The pattern map is set by loading the mappings from a file. This will replace any existing pattern

mappings in the cluster. Once loaded, the cluster will persist these pattern maps so they do not need to

be reloaded when the cluster is restarted.

The pattern map can be loaded with the following command:

SET PATTERN MAP FILE 'path/to/file' ;

The pattern map file must be copied to every node in the RapidsDB Cluster.

The pattern map file is in CSV format with the following columns in this order:

1. Priority (integer)
2. Search (string)
3. Replace (string)

Because there can be multiple patterns specified, priority represents the importance of an individual

mapping. A higher number means that that mapping is applied before a mapping with a lower priority.

The search field is a regex pattern to be matched against the external ID credential. If this pattern

matches against the external identifier then the corresponding replace field is used as the substitute

RapidsDB username.

By default this search pattern may match multiple times against the external identifier unless the

pattern starts with a '^' and ends with a '$' to signify that it should match the entire record. This field

should be quoted to preserve case.

The value of the replace field is used as the RapidsDB username when the corresponding search

pattern matches against the external identifier. The replace field can contain regex capture group syntax

(e.g. '$1' for the first capture group, '$2' for the second capture group, etc). If the search pattern

matched against the external identifier multiple times then the value of this replace field will be applied

against the external identifier multiple times also.

Please note that if the replace field is quoted then the case of the resulting username will be

preserved. If it is not quoted then the username will be folded to uppercase as per RapidsDB object

naming rules.

Examples:

Transform any Kerberos admin account to the username 'admin'.e.g. map

craig/admin@EXAMPLE.COM → ADMIN

Map all Kerberos users to RDP usernames without any qualifiers and the realm. e.g. map

craig/engineering@EXAMPLE.COM → CRAIG

100, "^(.+)/admin@EXAMPLE.COM$", admin

mailto:craig/admin@EXAMPLE.COM
mailto:craig/engineering@EXAMPLE.COM

RapidsDB Release 4.3.3 User Guide Page 195 © Borrui Data Technology Co. Ltd 2022

Replace all instances of the word 'boray' with 'rapids' instead:

In order to see if the pattern maps are working as expected, please refer to the RapidsDB dqx.log file on

the node where a client connects to and tries to authenticate. The RapidsDB node will print log

messages that indicate the initial identifier given and whether this is mapped either by direct username

mapping or via pattern mapping.

Example:

12.9.5 Clearing the Pattern Map

The pattern map can be cleared by either loading an empty file, or by executing the command:

SET PATTERN MAP FILE NULL ;

This will clear the pattern map across all cluster nodes.

Example:

90, "^(.+?)(/[^@]*)?@EXAMPLE.COM$", $1

rapids > select * from pattern_maps order by priority asc;

PRIORITY SEARCH REPLACE

-------- ------ -------

80 boray rapids

90 ^(.+?)(/[^@]*)?@RDP.COM$ $1

100 ^(.+)/admin@RDP.COM$ ADMIN

80, "boray", "rapids"

rapids@db01:/opt/rdp/current$ cat

/home/rapids/dave/R4_Tests/R3.6_Tests/Auth/Kerberos/pattern.map

100, "^(.+)/admin@RDP.COM$", ADMIN

90, "^(.+?)(/[^@]*)?@RDP.COM$", $1

80, "boray", "rapids"

rapids > SET PATTERN MAP FILE

'/home/rapids/dave/R4_Tests/R3.6_Tests/Auth/Kerberos/pattern.map';

0 row(s) returned (0.37 sec)

rapids > select * from pattern_maps order by priority asc;

PRIORITY SEARCH REPLACE

-------- ------ -------

80 boray rapids

90 ^(.+?)(/[^@]*)?@RDP.COM$ $1

100 ^(.+)/admin@RDP.COM$ ADMIN

3 row(s) returned (1.50 sec)

RapidsDB Release 4.3.3 User Guide Page 196 © Borrui Data Technology Co. Ltd 2022

12.10 Adding Connectors

The examples in this section use the following 3-node RapidsDB Cluster:

Linux node name RapidsDB node name RapidsDB node type ip address

db01 RDP1 DQC 192.168.1.1

db02 RDP2 DQE 192.168.1.2

db03 RDP3 DQE 192.168.1.3

12.10.1 CREATE CONNECTOR Command

The CREATE CONNECTOR command is used to add new Connectors to a Federation. The general format

for the CREATE CONNECTOR command is:

CREATE CONNECTOR <name>

TYPE <Connector type> [WITH <key>='<value>' [,<key>='<value>']]

[NODE <node name> [WITH <key>='<value>' [,<key>='<value>'] [<further node clauses>]]

[<Include Clause> [<Include Clause>]]

The WITH clause is used to specify Connector-specific options (specified as key-value pairs), such as the

host name/ip address for the underlying data source. The WITH clause requires that the <value> option

is enclosed in single quotes. For example,

This command would create an Oracle Connector named ORA1 running on RapidsDB Cluster node RDP1.

After the Connector has been created, the Connector will automatically retrieve all of the table

metadata for the schemas and tables associated that Connector.

12.10.2 Include Clause

When configuring a Connector the user can specify the tables to be included from the back-end data

store for querying and can also specify the names under which the included catalog, schema and/or

tables will appear in RapidsDB. The following describes how to specify this information, which will be

part of the Connector configuration command described later.

The <Include Clause> is used for the following:

3 row(s) returned (0.23 sec)

rapids > set pattern map file null;

0 row(s) returned (0.04 sec)

rapids > select * from pattern_maps order by priority asc;

0 row(s) returned (0.12 sec)

CREATE CONNECTOR ORA1 TYPE ORACLE WITH USER='rapids', PASSWORD='rdpuser',

HOST='10.1.1.20', PORT='1521', SID='XEPDB1' NODE RDP1;

RapidsDB Release 4.3.3 User Guide Page 197 © Borrui Data Technology Co. Ltd 2022

1. To specify the tables that should be brought into the name space managed by the

Connector.

2. To optionally specify alternative names under which the included catalogs, schemas

and/or tables will appear in RapidsDB.

An <Include Clause> has the following format:

When the “AS” clause is used, the catalog, schema or table will appear within RapidsDB under the

specified name, and that is the name that the user will use when submitting queries to RapidsDB.

The USING clause applies to the Hadoop Connector.

If no <Include Clause> is specified when a Connector is created, then the default will be:

CATALOG * SCHEMA * TABLE *

which will bring in the metadata for all of the tables that the user is authorized to access available for

querying.

NOTE:
It is strongly recommended that the user be as selective as possible when specifying the tables to be included
for querying

The catalog, schema and table names are case-insensitive and do not have to be enclosed in back-ticks

or double quotes unless the Connector option IGNORE_CASE is set to FALSE, and in this case all catalog,

schema and table names are case-sensitive and must match the case used by the underlying data

source, and must be enclosed in back-ticks or double quotes.

Below are some sample Include Clauses for an Oracle Connector named “ORA1”:

This clause would include the tables CUSTOMERS and ORDERS from the schema named EAST.

The fully qualified name for the CUSTOMERS table the user would be:

ORA1.EAST.CUSTOMERS

CATALOG {*|<catalog name>} [AS <catalog name]

[SCHEMA {*|<schema name>} [AS <schema name]]

[TABLE {*|<table name> [AS <table name>] [USING (<column defs>) [,<table name> …]}]

[TABLE {*|<table name> [AS <table name>] [USING (<column defs>) [,<table name> …]}] …

CATALOG *

SCHEMA EAST

TABLE CUSTOMERS, ORDERS

CATALOG *

SCHEMA EAST

TABLE CUSTOMERS AS EASTCUSTOMERS, ORDERS AS EASTORDERS

RapidsDB Release 4.3.3 User Guide Page 198 © Borrui Data Technology Co. Ltd 2022

This clause would include the tables CUSTOMERS and ORDERS from the schema named EAST,

and map the CUSTOMERS and ORDERS table names to EASTCUSTOMERS and EASTORDERS. The

fully qualified name for the CUSTOMERS table the user would be:

ORA1.EAST.EASTCUSTOMERS

This clause would include the tables CUSTOMERS and ORDERS from schemas named EAST, and

WEST and map the CUSTOMERS and ORDERS table from the EAST schema to EASTCUSTOMERS

and EASTORDERS and from the WEST schema to WESTCUSTOMERS and WESTORDERS. The

user could then reference the table CUSTOMERS from the WEST schema as WESTCUSTOMERS.

The fully qualified name would be:

ORA1.WEST.WESTCUSTOMERS

This example is for a MemSQL Connector where the user has specified two tables with the same

names, but in different cases. This clause would include the tables “CUSTOMERS” and

“customers” from the EAST schema, and map the “CUSTOMERS” table to UPPER_CUSTOMERS

and the “customers” table to LOWER_CUSTOMERS. With this mapping the user can reference

the tables UPPER_CUSTOMERS and LOWER_CUSTOMERS as case-insensitive names.

12.10.3 Handling of Decimal Datatypes

The RapidsDB Execution Engine supports a high performance internal data type for decimal values, and

by default a Connector will use this internal data type when passing decimal column values to the

Execution Engine in order to provide the best performance. The internal data type has a precision of 17.

However, if the data value from the source column cannot be represented using the internal RapidsDB

decimal data type, or if an intermediate value that is computed as part of a query exceeds the size for

the internal decimal data type, then the associated query will fail with an error indicating an arithmetic

overflow. If this happens, then the Connector can be configured to use the Java BigDecimal data type

by setting the “BIGDECIMAL” option to TRUE. With this option set, queries using decimal values will be

slower but are guaranteed to be able to handle all possible column values and intermediate query

results.

CATALOG *

SCHEMA EAST

TABLE CUSTOMERS AS EASTCUSTOMERS, ORDERS AS EASTORDERS

SCHEMA WEST

TABLE CUSTOMERS AS WESTCUSTOMERS, ORDERS AS WESTORDERS

CATALOG MEMSQL

SCHEMA EAST

TABLE “CUSTOMERS” AS UPPER_CUSTOMERS, “customers” AS LOWER_CUSTOMERS

RapidsDB Release 4.3.3 User Guide Page 199 © Borrui Data Technology Co. Ltd 2022

12.10.4 Metadata Handling

Starting with the R4.2.2 (GA) release, the Connectors no longer cache their metadata information in

Zookeeper, and the implication of this is that if the RapidsDB Cluster is stopped and restarted, any

metadata information from the previously running RapidsDB cluster will be lost and the Connectors will

have to reacquire their metadata when the RapidsDB cluster is restarted. This behavior will be changed

in an upcoming release where the Connector metadata will be cached.

12.10.5 Adding a MOXE Connector

To add a MOXE Connector use the following command

The table below shows the possible settings for the key and value fields for a MOXE Connector:

Key: Default Value Value syntax Description

mem_per_node 1 <nnn>GB
where,
<nnn> is an integer
value > 0

Specifies the maximum amount
of memory in GB that MOXE can
use on each node in the
RapidsDB cluster.

partitions_per_node 2 Integer value > 0 Specifies the number of
partitions per node

Example 1:

This command would create a MOXE Connector on every node in the RapidsDB Cluster with a

maximum of 16GB per node and with 2 partitions per node, and the Connector would run on all

nodes in the RapidsDB cluster. The catalog and schema name associated with this Connector would

be “MOXE_16”.

Example 2:

This command would create a MOXE Connector to run on two RapidsDB Cluster nodes (“RDP2” and

“RDP3”) in the RapidsDB Cluster with a maximum of 16GB per node and with 8 partitions per node.

The catalog and schema name associated with this Connector would be “MOXE2”.

Refer to section 13 for details on managing MOXE tables

CREATE CONNECTOR <name> TYPE MOXE [WITH <key>='<value>' [,<key>='<value>']]

[NODE * | NODE <node name> [NODE <node name>] [<further node names>]]

CREATE CONNECTOR MOXE_16 TYPE MOXE WITH mem_per_node= '16GB ';

CREATE CONNECTOR MOXE2 TYPE MOXE WITH mem_per_node= '16GB ',

partitions_per_node='8' NODE RDP2 NODE RDP3;

RapidsDB Release 4.3.3 User Guide Page 200 © Borrui Data Technology Co. Ltd 2022

12.10.6 Adding a MemSQL Connector

To add a MemSQL Connector use the following command

For the MemSQL Connector, best performance is usually obtained by configuring the Connector to

operate on the same node as the MemSQL Aggregator node. By default, the Connector will be

configured to run from any node in the RapidsDB Cluster, and in this case RapidsDB will use the node

which minimizes the movement of data across the network.

The table below shows the possible settings for the key and value fields:

Key: Default Value Value syntax Description

host 'localhost' Non-empty, non-
whitespace string.

Specifies the hostname or IP
address that the MemSQL
Connector should use for
establishing a socket connection
to MemSQL.

port 3306 Integer value > 0 and
< 65536

Specifies the port number that
the MemSQL Connector should
use for establishing a socket
connection to MemSQL.

This must be specified

user Non-empty, non-
whitespace string

The user name for accessing
MemSQL

This must be specified

password Non-empty, non-
whitespace string

The password for the user for
accessing MemSQL

database Non-empty, case-
sensitive, non-
whitespace string

The MemSQL database to be
used. The case must match the
case used by MemSQL. When the
database is specified this is
equivalent to specifying the
Include Clause (see 12.10.2):
CATALOG * SCHEMA database
TABLE *

NOTE:
If the database is not specified the
metadata for all of

CREATE CONNECTOR <name>

TYPE MEMSQL [WITH <key>='<value>' [,<key>='<value>']]

[NODE <node name> [,NODE <node name>]]

[<Include Clause> [<Include Clause>]]

RapidsDB Release 4.3.3 User Guide Page 201 © Borrui Data Technology Co. Ltd 2022

 the databases that the user has
access to will be brought in.

batch_size 100 Integer value > 0 and
< 1000

Specifies how the result set
should be batched when writing
the result set back to the
MemSQL database. Each batch
will contain the number of rows
specified by the batch_size.

bigdecimal FALSE [] | TRUE | FALSE Specifies whether decimal data
types should be mapped to the
internal RapidsDB decimal data
type (for optimal performance) or
whether the standard Java
bigdecimal data type should be
used. Refer to section 12.10.3 for
more information.

classpath A list of absolute
classpaths, with each
classpath separated
using either the
colon “:” character
for Linux, or the
semicolon “;”
character for
Windows

Specifies the classpaths to be
searched first for any jar files to
be included with this Connector.
The Connector will then use the
regular RapidsDB classpath to
complete any searches.

fetch_size 100 Integer value > 0 and
< 1000

Specifies how the data being
retrieved from the MemSQL
database should be batched.
Each batch will contain the
number of rows specified by the
fetch_size.

ignore_case TRUE [] | TRUE | FALSE Specifies whether the Connector
should do case-insensitive
matching for table names.

NOTE: This setting would only be
set to FALSE if the MemSQL
database included tables with the
same names in the same schema
that were specified in different
cases.

server_timezone 'UTC' Non-empty, non-
whitespace string
specifying a valid
timezone

Override detection/mapping of
time zone. Used when the time
zone from server doesn't map to
the Java time zone.

_`<property key>`
=<property value>

 Non-empty, non-
whitespace string. By

Specifies a key value pair that will
be set as part of the Connection

RapidsDB Release 4.3.3 User Guide Page 202 © Borrui Data Technology Co. Ltd 2022

1. CREATE CONNECTOR MEMSQL1

TYPE MEMSQL WITH host='192.168.1.1', user='user1', database='tpch'

NODE RDP2;

 default, the
<property key> will
be converted to
upper case, in to
maintain the case for
the <property key> it
must be enclosed in
back-ticks (`)

Properties object for the
connection being established to
the MemSQL database.

For example:
_`useCompression`=true

This would result in the following
key value pair being set up in the
Properties object:
“USECOMPRESSION”, “true”

For MemSQL, the Properties keys
are case-sensitive and so this
Property would get ignored.

In order to preserve the case for
the key it must be enclosed in
back ticks as shown below:
_`useCompression`=true

This would result in the following

key value pair being set up in the
Properties object:
“useCompression”, “true”

NOTE: The use of this option
could result in unpredictable
behavior for the Connector and
should only be used in situations
where the user is very confident
that there will be no unexpected
side effects from setting this
Property.

Refer to section 12.10.2 for details on how to specify the <Include Clause>.

Example commands:

This command would create a MemSQL Connector on RapidsDB Cluster node RDP2 and it

would connect via JDBC to MemSQL using the default port number (3306) using ip address

RapidsDB Release 4.3.3 User Guide Page 203 © Borrui Data Technology Co. Ltd 2022

192.168.1.1. The Connnector would incldue all of the tables available from the MemSQL

data source for the database named “tpch”.

This command is similar to the pervious command with the one difference being that the

Connector can run on any node in the RapidsDB Cluster.

This example is equivalent to the first example, but in this example the “database” option is

omitted and instead an Include Clause (see 12.10.2) is used where the SCHEMA is set to

“tpch” to indicate that the metadata for the tables from the “tpch” database should be

brought in.

This command would bring in the metadata for the customers and orders tables from the

database named “tpch”.

This command uses the option “ignore_case” which has been set to FALSE because there

are two tables both named the same but with different cases. In this situation the table

2. CREATE CONNECTOR MEMSQL1

TYPE MEMSQL WITH host='192.168.1.1', user='user1', database='tpch';

3. CREATE CONNECTOR MEMSQL1

TYPE MEMSQL WITH host='192.168.1.1', user='user1'

NODE RDP2 CATALOG * SCHEMA tpch;

4. CREATE CONNECTOR MEMSQL1

TYPE MEMSQL WITH host='192.168.1.1', user='user1'

NODE RDP2

CATALOG *

SCHEMA tpch

TABLE customers, orders;

5. CREATE CONNECTOR MEMSQL1

TYPE MEMSQL WITH host='192.168.1.1', user='user1', ignore_case=false

NODE RDP2

CATALOG *

SCHEMA tpch

TABLE “customers” ,“CUSTOMERS”;

RapidsDB Release 4.3.3 User Guide Page 204 © Borrui Data Technology Co. Ltd 2022

names have to be specified in double quotes, and they would also have to be specified in

double quotes when querying. For example:

SELECT * FROM “customers”;

This command is the same as the previous command but this time the tables “customers”

and “CUSTOMERS” are mapped to case-insensitive names so avoid the user having to

enclose the table names in double quotes. For example, the following queries would both

reference the same “customers” table:

SELECT * FROM lower_customers;

SELECT * FROM LOWER_CUSTOMERS;

This command includes the setting of the connection property, useCompression, and

instructs the Connector to use the Java bigdecimal data type for all decimal values.

12.10.7 Adding a MySQL Connector

To add a MySQL Connector use the following command

By default, the Connector will be configured to run from any node in the RapidsDB Cluster, and in this

case RapidsDB will use the node which minimizes the movement of data across the network.

6. CREATE CONNECTOR MEMSQL1

TYPE MEMSQL WITH host='192.168.1.1', port='3306', user='user1', ignore_case=false

NODE RDP2

CATALOG *

SCHEMA tpch

TABLE “customers” as LOWER_CUSTOMERS, “CUSTOMERS” AS UPPER_CUSTOMERS;

7. CREATE CONNECTOR MEMSQL1

TYPE MEMSQL WITH host='192.168.1.1', port='3306', user='user1', database='tpch',

_`useCompression`=true, bigdecimal

NODE RDP2;

CREATE CONNECTOR <name>

TYPE MYSQL [WITH <key>='<value>' [,<key>='<value>']]

[NODE <node name> [NODE <node name>]]

[<Include Clause> [<Include Clause>]]

RapidsDB Release 4.3.3 User Guide Page 205 © Borrui Data Technology Co. Ltd 2022

The table below shows the possible settings for the key and value fields:

Key: Default Value Value syntax Description

host 'localhost' Non-empty, non-whitespace
string.

Specifies the hostname or IP
address that the Connector
should use for establishing a
socket connection to
MySQL.

port 3306 Integer value > 0 and <
65536

Specifies the port number
that the Connector should
use for establishing a socket
connection to MySQL.

database Non-empty, case-sensitive,
non-whitespace string

The MySQL database to be
used. The case must match
the case used by MySQL.
When the database is
specified this is equivalent
to specifying the Include
Clause (see 12.10.2):
CATALOG * SCHEMA
database TABLE *

NOTE:
If the database is not
specified the metadata for
all of the databases that the
user has access to will be
brought in.

user Non-empty, non-whitespace
string

The user name for accessing
MySQL

This must be specified

password Non-empty, non-whitespace
string

The password for the user
for accessing MySQL

batch_size 1000 Integer value >= 100 and <=
1000

Specifies how the result set
should be batched when
writing the result set back to
the MySQL database. Each
batch will contain the
number of rows specified by
the batch_size.

bigdecimal FALSE [] | TRUE | FALSE Specifies whether decimal
data types should be
mapped to the internal
RapidsDB decimal data type
(for optimal performance)
or whether the standard

RapidsDB Release 4.3.3 User Guide Page 206 © Borrui Data Technology Co. Ltd 2022

 Java bigdecimal data type
should be used. Refer to
section 12.10.3 for more
information.

classpath A list of absolute classpaths,
with each classpath
separated using either the
colon “:” character for Linux,
or the semicolon “;”
character for Windows

Specifies the classpaths to
be searched first for any jar
files to be included with this
Connector. The Connector
will then use the regular
RapidsDB classpath to
complete any searches.

fetch_size see Description Integer value > 0 and < 1000 Specifies how the data being
retrieved from the MySQL
database should be
batched. Each batch will
contain the number of rows
specified by the fetch_size.

Note: the default value has
been set to provide the
optimal fetch performance
and it is not recommended
that this default be
overridden.

ignore_case TRUE [] | TRUE | FALSE Specifies whether the
Connector should do case-
insensitive matching for
table names.

NOTE: This setting would
only be set to FALSE if the
MySQL database included
tables with the same names
in the same schema that
were specified in different
cases.

server_timezone 'UTC' Non-empty, non-whitespace
string specifying a valid
timezone

Specifies the timezone that
the MySQL database is
using.

The value specified will get
passed to the MySQL
Connector-J as part of the
connection url. Refer to the
MySQL Connector-J
documentation for more
information

RapidsDB Release 4.3.3 User Guide Page 207 © Borrui Data Technology Co. Ltd 2022

usessl FALSE [] | TRUE | FALSE Specifies whether ssl should
be used when connecting to
the MySQL database.

The value specified will get
passed to the MySQL
Connector-J as part of the
connection url. Refer to the
MySQL Connector-J
documentation for more
information

_`<property key>`
=<property value>

 Non-empty, non-whitespace
string. By default, the
<property key> will be
converted to upper case, in
to maintain the case for the
<property key> it must be
enclosed in back-ticks (`)

Specifies a key value pair
that will be set as part of the
Connection Properties
object for the connection
being established to the
MySQL database.

 For example:
_`useCompression`=true

This would result in the
following key value pair
being set up in the
Properties object:
“USECOMPRESSION”, “true”

For MySQL, the Properties
keys are case-sensitive and
so this Property would get
ignored.

In order to preserve the
case for the key it must be
enclosed in back ticks as
shown below:
_`useCompression`=true

This would result in the
following key value pair
being set up in the
Properties object:
“useCompression”, “true”

NOTE: The use of this option
could result in unpredictable
behavior for the Connector
and should only be used in

RapidsDB Release 4.3.3 User Guide Page 208 © Borrui Data Technology Co. Ltd 2022

CREATE CONNECTOR MYSQL1

TYPE MYSQL WITH host='192.168.1.1', user='user1', database='tpch'

NODE RDP2;

 situations where the user is
very confident that there
will be no unexpected side
effects from setting this
Property.

Refer to section 12.10.2 for details on how to specify the <Include clause>.

Example commands:

This command would create a MySQL Connector on RapidsDB Cluster node RDP2 and it

would connect to MySQL using the default port number,3306, and ip address 192.168.1.1.

The Connnector would bring in the metadata for all of the tables available from the MySQL

data source for the database named “tpch”.

This command would create a MySQL Connector the could run on any node in the RapidsDB

Cluster and it would connect to MySQL using the default port number,3306, and ip address

192.168.1.1. The Connnector would bring in the metadata for all of the tables available

from the MySQL data source for the database named “tpch”.

This command is equivalent to the previous example. In this example the “database” option

is omitted and instead an Include Clause (see 12.10.2) is used where the SCHEMA is set to

“tpch” to indicate that the metadata for the tables from the “tpch” database should be

brought in.

This command would create a MySQL Connector that can run on any node in the RapidsDB

Cluster and it would connect to MySQL using port number 3307 and ip address 192.168.1.1,

CREATE CONNECTOR MYSQL1

TYPE MYSQL WITH host='192.168.1.1', user='user1', database='tpch';

CREATE CONNECTOR MYSQL1

TYPE MYSQL WITH host='192.168.1.1', user='user1'

CATALOG * SCHEMA tpch;

CREATE CONNECTOR MYSQL1

TYPE MYSQL WITH host='192.168.1.1', port='3307', user='user1', database='tpch',

useSSL, bigdecimal;

RapidsDB Release 4.3.3 User Guide Page 209 © Borrui Data Technology Co. Ltd 2022

and it would also pass the “useSSL=true” option to the MySQL Connector-J . The Connector

would also use Java bigdecimal for all decimal values. The Connnector would include all of

the tables available from the MySQL data source for the database named “tpch”.

In this command the option “ignore_case” has been set to FALSE because there are two

tables both named the same but with different cases. In this situation the table names have

to be specified in double quotes, and they would also have to be specified in double quotes

when querying. For example:

SELECT * FROM “customers”;

This command is the same as the previous command but this time the tables “customers”

and “CUSTOMERS” are mapped to case-insensitive names so avoid the user having to

enclose the table names in double quotes. For example, the following queries would both

reference the same “customers” table:

SELECT * FROM lower_customers;

SELECT * FROM LOWER_CUSTOMERS;

CREATE CONNECTOR MYSQL1

TYPE MYSQL WITH host='192.168.1.1', port='3307', user='user1', ignore_case=false

CATALOG *

SCHEMA tpch

TABLE “customers” ,“CUSTOMERS”;

CREATE CONNECTOR MYSQL1

TYPE MYSQL WITH host='192.168.1.1', port='3307', user='user1', ignore_case=false

CATALOG *

SCHEMA *

TABLE “customers” as LOWER_CUSTOMERS, “CUSTOMERS” AS UPPER_CUSTOMERS;

NOTE:

The MySQL Connector should not be used for connecting to a MemSQL database because it

can result in failures and unpredictable results. For example, the following error could be

reported in the dqx.log file:

rapidsdata.database.exceptions.DbSubException: java.sql.SQLException: Unknown system

variable 'performance_schema'

RapidsDB Release 4.3.3 User Guide Page 210 © Borrui Data Technology Co. Ltd 2022

12.10.8 Adding an Oracle Connector

To add an Oracle Connector use the following command

By default, the Connector will be configured to run from any node in the RapidsDB Cluster, and in this

case RapidsDB will use the node which minimizes the movement of data across the network.

NOTE:

The RapidsDB system includes the following jar file for the Oracle JDBC Driver: ojdbc8- 21.1.0.0.jar. If

the user wishes to use a different version of the Oracle JDBC Driver then the user must delete the

ojdbc8-21.1.0.0.jar file from the lib directory of the RapidsDB installation directory on the node where

the Oracle Connector is going to run and then copy the new Oracle JDBC Driver to the same lib

directory.

The table below shows the possible settings for the key and value fields:

Key: Default

Value
Value syntax Description

host 'localhost' Non-empty, non-whitespace
string.

Specifies the hostname or IP
address that the Connector should
use for establishing a socket
connection to Oracle.

port 1521 Integer value > 0 and < 65536 Specifies the port number that the
Connector should use for
establishing a socket connection
to Oracle.

sid Non-empty, non-whitespace
string

Oracle SID

This must be specified

user Non-empty, non-whitespace
string

The user name for accessing the
data source.

This must be specified

2020-08-04T23:02:57,983 [StdErr] ERROR: java.util.concurrent.CompletionException:

com.rapidsdata.database.exceptions.DbSubException: java.sql.SQLException: Unknown

system variable 'performance_schema'

When connecting to a MemSQL database always use the MemSQL Connector (see 12.10.6)

CREATE CONNECTOR <name>

TYPE ORACLE [WITH <key>='<value>' [,<key>='<value>']]

[NODE <node name> [NODE <node name>]]

[<Include Clause> [<Include Clause>]]

RapidsDB Release 4.3.3 User Guide Page 211 © Borrui Data Technology Co. Ltd 2022

password Non-empty, non-whitespace
string

The password for the user for
accessing the data source

batch_size 1000 Integer value >= 100 and <=
1000

Specifies how the result set should
be batched when writing the
result set back to the Oracle
database. Each batch will contain
the number of rows specified by
the batch_size.

bigdecimal FALSE [] | TRUE | FALSE Specifies whether decimal data
types should be mapped to the
internal RapidsDB decimal data
type (for optimal performance) or
whether the standard Java
bigdecimal data type should be
used. Refer to section 12.10.3 for
more information.

classpath A list of absolute classpaths,
with each classpath separated
using either the colon “:”
character for Linux, or the
semicolon “;” character for
Windows

Specifies the classpaths to be
searched first for any jar files to be
included with this Connector. The
Connector will then use the
regular RapidsDB classpath to
complete any searches.

fetch_size 10 Integer value > 0 and < 1000 Specifies how the data being
retrieved from the Oracle
database should be batched.
Each batch will contain the
number of rows specified by the
fetch_size.

ignore_case TRUE [] | TRUE | FALSE Specifies whether the Connector
should do case-insensitive
matching for table names.

NOTE: This setting would only be
set to FALSE if the Oracle database
included tables with the same
names in the same schema that
were specified in different cases.

_<property key>
=<property value>

 Non-empty, non-whitespace
string.

Specifies a key value pair that will
be set as part of the Connection
Properties object for the
connection being established to
the Oracle database.

NOTE: The use of this option could
result in unpredictable behavior
for the Connector and should only
be used in situations where the

RapidsDB Release 4.3.3 User Guide Page 212 © Borrui Data Technology Co. Ltd 2022

 user is very confident that there
will be no unexpected side effects
from setting this Property.

Refer to section 12.10.2 for details on how to specify the <Include clause>.

Examples:

1. The following is a sample Connector to an Oracle database with a SID of “dev1” that will include

all of the schemas and tables accessible by the specified user. The Connector is configured to

run on any node in the RapidsDB Cluster:

2. In this example the Oracle Connector is configured to only run on the node RDP1 and the

Connector will use Java bigdecimal for all decimal values:

3. The following is a sample Connector to an Oracle database which will include only the schemas

named “orders” and “sales”:

12.10.9 Adding a Postgres Connector

To add a Postgres Connector use the following command

By default, the Connector will be configured to run from any node in the RapidsDB Cluster, and in this

case RapidsDB will use the node which minimizes the movement of data across the network.

NOTE:

The RapidsDB system includes the following jar file for the Postgres JDBC Driver: postgres- 4.3.1.jar. If

the user wishes to use a different version of the Postgres JDBC Driver then the user must delete the

postgres-4.3.1.jar file from the lib directory of the RapidsDB installation directory on the node where

the Postgres Connector is going to run and then copy the new Postgres JDBC Driver to the same lib

directory.

CREATE CONNECTOR ORA1 TYPE ORACLE WITH HOST='10.1.1.20', SID= 'dev1', USER='rapids',

PASSWORD='rdpuser';

CREATE CONNECTOR ORA1 TYPE ORACLE WITH HOST='10.1.1.20', SID= 'dev1', USER='rapids',

PASSWORD='rdpuser', bigdecimal NODE RDP1;

CREATE CONNECTOR ORA1 TYPE ORACLE WITH HOST='10.1.1.20', SID= 'dev1', USER='rapids',

PASSWORD='rdpuser' NODE RDP1 CATALOG * SCHEMA “orders” SCHEMA “sales” TABLE *;

CREATE CONNECTOR <name>

TYPE POSTGRES [WITH <key>='<value>' [,<key>='<value>']]

[NODE <node name> [NODE <node name>]]

[<Include Clause> [<Include Clause>]]

RapidsDB Release 4.3.3 User Guide Page 213 © Borrui Data Technology Co. Ltd 2022

The table below shows the possible settings for the key and value fields:

RapidsDB Release 4.3.3 User Guide Page 214 © Borrui Data Technology Co. Ltd 2022

Key: Default
Value

Value syntax Description

host 'localhost' Non-empty, non-whitespace
string.

Specifies the hostname or IP
address that the Connector should
use for establishing a socket
connection to Postgres.

port 5432 Integer value > 0 and < 65536 Specifies the port number that the
Connector should use for
establishing a socket connection
to Postgres.

database 'public' Non-empty, non-whitespace
string

The database to connect to.

user Non-empty, non-whitespace
string

The user name for accessing the
data source.

This must be specified

password Non-empty, non-whitespace
string

The password for the user for
accessing the data source

batch_size 100 Integer value >= 100 and <=
1000

Specifies how the result set should
be batched when writing the
result set back to the Postgres
database. Each batch will contain
the number of rows specified by
the batch_size.

bigdecimal FALSE [] | TRUE | FALSE Specifies whether decimal data
types should be mapped to the
internal RapidsDB decimal data
type (for optimal performance) or
whether the standard Java
bigdecimal data type should be
used. Refer to section 7.10.3 for
more information.

classpath A list of absolute classpaths, with
each classpath separated using
either the colon “:” character for
Linux, or the semicolon “;”
character for Windows

Specifies the classpaths to be
searched first for any jar files to be
included with this Connector. The
Connector will then use the
regular RapidsDB classpath to
complete any searches.

fetch_size 100 Integer value > 0 and < 1000 Specifies how the data being
retrieved from the Postgres
database should be batched.
Each batch will contain the
number of rows specified by the
fetch_size.

RapidsDB Release 4.3.3 User Guide Page 215 © Borrui Data Technology Co. Ltd 2022

ignore_case TRUE [] | TRUE | FALSE Specifies whether the Connector
should do case-insensitive
matching for table names.

NOTE: This setting would only be
set to FALSE if the Postgres
database included tables with the
same names in the same schema
that were specified in different
cases.

_<property key>
=<property value>

 Non-empty, non-whitespace
string.

Specifies a key value pair that will
be set as part of the Connection
Properties object for the
connection being established to
the Postgres database.

NOTE: The use of this option could
result in unpredictable behavior
for the Connector and should only
be used in situations where the
user is very confident that there
will be no unexpected side effects
from setting this Property.

Refer to section 12.10.2 for details on how to specify the <Include clause>.

When specifying schema or table names using the SCHEMA or TABLE clauses, the names must be

enclosed in back-ticks or double quotes and match the case used by the Postgres database (the default

is lower case).

Examples:

1. The following is a sample Connector to a Postgres database “dw1” using port 6432 that will

include all of the schemas and tables accessible by the specified user, and the Connector will use

Java big decimal datatypes for all numeric values. The Connector is configured to run from any

node in the RapidsDB Cluster:

2. The following is a sample Connector to a Postgres database “dw1” which will include only the

schemas named “orders” and “sales”, and the Connector is configured to only run on the node

RDP2 in the RapidsDB Cluster:

CREATE CONNECTOR PG1 TYPE POSTGRES WITH host= '10.10.1.1', port='6432', database='dw1',

USER='adm', PASSWORD='admpsw', bigdecimal;

CREATE CONNECTOR PG1 TYPE POSTGRES WITH host= '10.10.1.1', database='dw1', USER='adm',

PASSWORD='admpsw' NODE RDP2 CATALOG * SCHEMA “orders” SCHEMA “sales” ;

RapidsDB Release 4.3.3 User Guide Page 216 © Borrui Data Technology Co. Ltd 2022

NOTES:

1. If two Postgres Connectors are created specifying the same database name, and the Connectors

reference the same tables, then any such table names will be duplicated in the RapidsDB

metadata tables because the fully qualified table names will have the same catalog and schema

names. To ensure that this does not happen, the CATALOG name for one of the Postgres

Connectors should be mapped to a different name as shown in the example below:

The table names for the Connectors can now be disambiguated by using the catalog name as

"rdp4" for the PG1 Connector or "pg2"for the PG2 Connector:

o Select * from rdp4.public.t1;

o Select * from pg2.public.t1;

12.10.10 Adding a Greenplum Connector

To add a Greenplum Connector use the following command

By default, the Connector will be configured to run from any node in the RapidsDB Cluster, and in this

case RapidsDB will use the node which minimizes the movement of data across the network.

NOTE:

The user must also copy the Greenplum JDBC Driver jar file to the “lib” directory of the RapidsDB

installation directory on the node where the Greenplum Connector is going to run.

The table below shows the possible settings for the key and value fields:

Key: Default
Value

Value syntax Description

url jdbc:pivotal:greenplum://<host>:<p
ort>;DatabaseName=<database>[?
<atttributes>]

Specifies the JDBC connection
string (url) to be used for the
Greenplum JDBC Driver.

CREATE CONNECTOR PG1 TYPE POSTGRES WITH USER='rapids', PASSWORD='rapids',

DATABASE='rdp4', HOST='192.168.10.12';

CREATE CONNECTOR PG2 TYPE POSTGRES WITH USER='rapids', PASSWORD='rapids',

DATABASE='rdp4', HOST='192.168.10.12' CATALOG "rdp4" AS "pg2";

CREATE CONNECTOR <name>

TYPE POSTGRES [WITH <key>='<value>' [,<key>='<value>']]

[NODE <node name> [NODE <name>]]

[<Include Clause> [<Include Clause>]]

RapidsDB Release 4.3.3 User Guide Page 217 © Borrui Data Technology Co. Ltd 2022

 Example:
jdbc:pivotal:greenplum://10.10.
1.1:5432;DatabaseName=dwctr

This must be specified

user Non-empty, non-whitespace string The user name for accessing the
data source.

This must be specified

password Non-empty, non-whitespace string The password for the user for
accessing the data source

batch_size 1000 Integer value >= 100 and <= 1000 Specifies how the result set
should be batched when
sending the results back to the
Connector. The result set will
be batched using the specified
number as the batch size.

bigdecimal FALSE [] | TRUE | FALSE Specifies whether decimal data
types should be mapped to the
internal RapidsDB decimal data
type (for optimal performance)
or whether the standard Java
bigdecimal data type should be
used. Refer to section 12.10.3
for more information.

classpath A list of absolute classpaths, with
each classpath separated using
either the colon “:” character for
Linux, or the semicolon “;”
character for Windows

Specifies the classpaths to be
searched first for any jar files to
be included with this Connector.
The Connector will then use the
regular RapidsDB classpath to
complete any searches.

fetch_size 100 Integer value > 0 and < 1000 Specifies how the data being
retrieved from the Greenplum
database should be batched.
Each batch will contain the
number of rows specified by the
fetch_size.

ignore_case TRUE [] | TRUE | FALSE Specifies whether the Connector
should do case-insensitive
matching for table names.

NOTE: This setting would only
be set to FALSE if the
Greenplum database included
tables with the same names in
the same schema that were
specified in different cases.

RapidsDB Release 4.3.3 User Guide Page 218 © Borrui Data Technology Co. Ltd 2022

_<property key>
=<property value>

 Non-empty, non-whitespace string. Specifies a key value pair that
will be set as part of the
Connection Properties object for
the connection being
established to the Greenplum
database.

NOTE: The use of this option
could result in unpredictable
behavior for the Connector and
should only be used in situations
where the user is very confident
that there will be no unexpected
side effects from setting this
Property.

Refer to section 12.10.2 for details on how to specify the <Include clause>.

When specifying schema or table names using the SCHEMA or TABLE clauses, the names must be

enclosed in double quotes and match the case used by the Greenplum database (the default is lower

case).

Examples:

1. The following is a sample Connector to a Greenplum database “dwctr” that will include all of the

schemas and tables accessible by the specified user. The Connector is configured to run on any

node in the RapidsDB Cluster:

2. The following is a sample Connector to a Greenplum database “dwctr” which will include only

the schemas named “orders” and “sales”, and the Connector will use Java bigdecimal for all

decimal values and the Connector is configured to only run from the node RDP2 in the RapidsDB

Cluster:

12.10.11 Adding a Generic JDBC Connector

To add a Generic JDBC Connector use the following command:

CREATE CONNECTOR GP1 TYPE POSTGRES WITH

url= 'jdbc: pivotal:greenplum://10.10.1.1:5432;DatabaseName=dwctr', USER='adm',

PASSWORD='admpsw';

CREATE CONNECTOR GP1 TYPE POSTGRES WITH

CONNECTIONSTRING= 'jdbc: pivotal:greenplum://10.10.1.1:5432;DatabaseName=dwctr',

USER='adm', PASSWORD='admpsw', bigdecimal NODE RDP2 CATALOG * SCHEMA “orders”

SCHEMA “sales”;

RapidsDB Release 4.3.3 User Guide Page 219 © Borrui Data Technology Co. Ltd 2022

By default, the Connector will be configured to run from any node in the RapidsDB Cluster, and in this

case RapidsDB will use the node which minimizes the movement of data across the network.

NOTES

1. For the JDBC Connector, the user must copy the JDBC Driver for the associated data source to

the “lib” directory of the RapidsDB installation directory on all nodes where the JDBC Connector

is going to run.

2. NOTE: With Release 4.3, the JDBC Connector no longer caches it’s metadata in Zookeeper,

which means that when the RapidsDB Cluster is restarted a JDBC Connector will have to

reacquire its metadata from the back-end data source at startup time. In the case where there a

large number (thousands) of tables in the metadata, this can take some time and delay the

availability of the JDBC Connector. The previous version of the JDBC Connector can still be used

by specifying the “TYPE” as “OLDJDBC”, in which case the metadata will continue to be cached

in Zookeeper and will be automatically restored when a RapidsDB Cluster is restarted. The

disadvantage of using an “OLDJDBC” Connector is that the Connector will not use the higher

performance and more stable infrastructure that the latest “JDBC” Connector uses.

Example:

The table below shows the possible settings for the key and value fields:

Key: Default
Value

Value syntax Description

url Non-empty, non-
whitespace string.

Specifies the JDBC connection string
(url) to be used for the JDBC Driver for
the data source to be accessed.

Refer to the documentation for the
JDBC Driver being used for details on
the format for the url option.

Example:
jdbc:hive2://localhost:10000/default

CREATE CONNECTOR <name>

TYPE JDBC [WITH <key>='<value>' [,<key>='<value>']]

[NODE <node name> [NODE <node name>]]

[<Include Clause> [<Include Clause>]]

CREATE CONNECTOR SQL_SERVER TYPE OLDJDBC WITH URL ='

jdbc:sqlserver://10.0.0.1:1433;databaseName=Sales; loginTimeout=30', USER='sales';

RapidsDB Release 4.3.3 User Guide Page 220 © Borrui Data Technology Co. Ltd 2022

 This must be specified

user Non-empty, non-
whitespace string

The user name for accessing the data
source.

This must be specified

password Non-empty, non-
whitespace string

The password for the user for
accessing the data source

batch_size 1000 Integer value >=
100 and <= 1000

Specifies how the result set should be
batched when sending the results back
to the Connector. The result set will
be batched using the specified number
as the batch size.

bigdecimal FALSE [] | TRUE | FALSE Specifies whether decimal data types
should be mapped to the internal
RapidsDB decimal data type (for
optimal performance) or whether the
standard Java bigdecimal data type
should be used. Refer to section
12.10.3 for more information.

classpath A list of absolute
classpaths, with
each classpath
separated using
either the colon
“:” character for
Linux, or the
semicolon “;”
character for
Windows

Specifies the classpaths to be searched
first for any jar files to be included
with this Connector. The Connector
will then use the regular RapidsDB
classpath to complete any searches.

fetch_size 100 Integer value > 0
and < 1000

Specifies how the data being retrieved
from the source database should be
batched. Each batch will contain the
number of rows specified by the
fetch_size.

ignore_case TRUE [] | TRUE | FALSE Specifies whether the Connector
should do case-insensitive matching
for table names.

NOTE: This setting would only be set
to FALSE if the target database
included tables with the same names
in the same schema that were
specified in different cases.

server_timezone 'UTC' Non-empty, non-
whitespace string
specifying a valid
timezone

Override detection/mapping of time
zone. Used when the time zone from
server doesn't map to the Java time
zone.

RapidsDB Release 4.3.3 User Guide Page 221 © Borrui Data Technology Co. Ltd 2022

useSSL FALSE [] | TRUE | FALSE Specifies whether ssl should be used
when connecting to the target
database.

_`<property key>`
=<property value>

 Non-empty, non-
whitespace string.
By default, the
<property key>
will be converted
to upper case, in
to maintain the
case for the
<property key> it
must be enclosed
in back-ticks (`)

Specifies a key value pair that will be
set as part of the Connection
Properties object for the connection
being established to the data source.

For example:
_`useCompression`=true

This would result in the following key
value pair being set up in the
Properties object:
“USECOMPRESSION”, “true”

For some data sources, the Properties
keys are case-sensitive and so this
Property would get ignored.

In order to preserve the case for the
key it must be enclosed in back ticks as
shown below:
_cuseCompression`=true

This would result in the following key
value pair being set up in the
Properties object:
“useCompression”, “true”

Refer to the documentation for the
JDBC Driver being used for details on
the case sensitivity for Properties keys.

NOTE: The use of this option could
result in unpredictable behavior for
the Connector and should only be used
in situations where the user is very
confident that there will be no
unexpected side effects from setting
this Property.

Refer to section 12.10.2 for details on how to specify the <Include clause>.

Examples:

1. The following is a sample Connector to a SQL Server database:

RapidsDB Release 4.3.3 User Guide Page 222 © Borrui Data Technology Co. Ltd 2022

2. The following is a sample Connector to a SQL Server database, with a connection property

included in the url:

3. The following is the same as the previous example, but this time the connection property is

specified outside of the url:

As connection properties for SQL Server are not case-sensitive there is no need to enclose the

loginTimeout in back ticks.

4. The following is a sample Connector to a SQL Server database, with the option set to specify that

Java bigdecimal should be used for all decimal values:

12.10.12 Adding a Hadoop Connector

12.10.12.1 Creating a Hadoop Connector

To add a Hadoop Connector use the following command:

CREATE CONNECTOR S1 TYPE JDBC

WITH CONNECTIONSTRING=' jdbc:sqlserver://10.0.0.1:1433;databaseName=Sales', USER='sales',

CREATE CONNECTOR S1 TYPE JDBC

WITH URL=' jdbc:sqlserver://10.0.0.1:1433;databaseName=Sales; loginTimeout=30', USER='sales';

CREATE CONNECTOR S1 TYPE JDBC

WITH URL =' jdbc:sqlserver://10.0.0.1:1433;databaseName=Sales', USER='sales',

_loginTimeout=30;

CREATE CONNECTOR S1 TYPE JDBC

WITH URL =' jdbc:sqlserver://10.0.0.1:1433;databaseName=Sales', USER='sales', bigdecimal;

CREATE CONNECTOR <name> TYPE HADOOP

[WITH <key>='<value>' [,<key>='<value>'] [,<further key values>]]

[NODE * | NODE <node name> [NODE <node name>] [<further node names>]]

CATALOG [* | <name> [AS <catalog>]]

SCHEMA [* | PUBLIC [AS <schema>] | <Hive Database> [WITH INCLUDES=<table list>]]

[<table_specifier> [,<further table specifiers>]];

<table list>:

<table name>[,<table name>[,<table name>…]] | <wildcard> | <regex>

<wildcard>:

Any combination of characters and *’s

<regex>:

Any valid regex expression

RapidsDB Release 4.3.3 User Guide Page 223 © Borrui Data Technology Co. Ltd 2022

The WITH clause is used to specify Connector-specific options (specified as key-value pairs), such as the

url to the HDFS name node. The WITH clause can be specified at the Connector (outermost) level, in

which case it applies to all of the tables below, or it can be specified at the table level in which case it

only applies to that table and overrides the setting at the Connector level. For example, in the following

the field delimiter is defined as ',' at the Connector level, but for the table T2 the field delimiter is '|'.

The NODE clause specifies which nodes in the RapidsDB Cluster the Hadoop Connector will run on. By

default, if the NODE clause is not specified, then the Hadoop Connector will run on all of the nodes in

the RapidsDB Cluster. The example below configures a Hadoop Connector to run on two nodes in the

RapidsDB Cluster:

<table_specifier>:

TABLE <table name>

[USING] (<column definition>, …)

[PARTITION BY (<column name> [,<further column names>])]

[WITH <key>='<value>' [,<key>='<value>'] [,<further key values>]]

column_definition:

<column name> <data type>

<table name>: the name of the table associated with this HDFS file

<data_type>:

INTEGER[(<precision>)]

| FLOAT

| DECIMAL [(precision, scale)]

| DATE

| TIMESTAMP

| VARCHAR

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited', delimiter=','

CATALOG *

SCHEMA *

TABLE T1 (c1 integer, c2 timestamp) WITH path='/data/sample/t1'

TABLE T2 (c1 integer, c2 timestamp) WITH path='/data/sample/t2', delimiter='|';

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited', delimiter=','

NODE RDP2 NODE RDP3

CATALOG *

SCHEMA *

RapidsDB Release 4.3.3 User Guide Page 224 © Borrui Data Technology Co. Ltd 2022

The table below shows the possible settings for the key and value fields:

Key: Default Value Value syntax Description

hdfs Non-empty, non-
whitespace string.

Specifies either the url to the
HDFS name node, or the HDFS
nameservice ID for an HDFS HA
configuration.

For example
'hdfs://192.168.10.15:8020'

This should match what is in the
core-site.xml file.

Or
'hdfs://boray'

This should match what is in the
hdfs-site.xml file.

This must be specified when not
using the Hive Metastore (see
metastore option below)

format 'delimited' |
'orc' |
'parquet'

Specifies the format of the file,
which can either be 'delimited',
'orc' or 'parquet'.

This must be specified at the
Connector level or table level.

path Non-empty, non-
whitespace string.

Specifies the full path name to
the HDFS file(s) associated with
this table.

This can only be specified as part
of the table_specifier

charset LANG setting Non-empty, non-
whitespace string.

Specifies the character set
encoding for the associated
HDFS file(s)

See 12.10.12.8 for more details

delimiter ',' '<char>'
Non-empty, single
character string

Specifies the field delimiter.

See 12.10.12.5.7 for more details

enclosed_by '<char>[<char>]' or
"'"

Specifies whether a field is
optionally enclosed by a

TABLE T1 (c1 integer, c2 timestamp) WITH path='/data/sample/t1'

TABLE T2 (c1 integer, c2 timestamp) WITH path='/data/sample/t2', delimiter='| ';

RapidsDB Release 4.3.3 User Guide Page 225 © Borrui Data Technology Co. Ltd 2022

 Non-empty, single or
two character string

If the enclosed_by is
a single quote
character then it
must be specified
using double quotes:
"'"
The default is no
enclosed_by

specified character. This is
commonly used to specify that
string fields are optionally
enclosed by either a single quote
or double quote character and
that character should not be
included as part of the field data.
If the same character is also
included as part of the field data,
then it must be escaped (see
12.10.12.5.3.1 for more details).

See 12.10.12.5.8 for more details

escape_char '\' '<char>'
Non-empty, single
character string

Specifies the character to be
used as an escape character.
This will allow the user to
include embedded field and
record terminator characters in
the data field as well embedded
quotes in the event that the field
is a string field that is enclosed
within quote characters.

See 12.10.12.5.9 for more details

ignore_header '0' Integer value >= 0 Specifies the number of header
records to be skipped

See 12.10.12.5.11 for more details

kerberos_keytab Non-empty, non-
whitespace string

Specifies the path name to the
Linux file containing the
Kerberos Keytab file for the user
specified by the kerberos_user
option

kerberos_user Non-empty, non-
whitespace string

Specifies the Kerberos principal
(user) name

metastore Non-empty, non-
whitespace string.

Specifies the ip address and port
number to be used for accessing
the Hive Metastore. For
example, 192.168.10.15:9083

namenodes <node>:<port>,… Specifies a comma-separated list
of the name nodes in an HDFS
HA Cluster. The name node can
be specified as either:
<host name>:<port>
or
<host ip address>:<port>

RapidsDB Release 4.3.3 User Guide Page 226 © Borrui Data Technology Co. Ltd 2022

 For example,
'db01:8020, db02:8020'
or
'192.168.10.10:8020,
192.168.10.12:8020'

This option must be specified
when the 'hdfs' option specifies
the nameservice ID (see 'hdfs'
above).

nameservice Non-empty, non-
whitespace string.

The nameservice ID for an HDFS
HA configuration.

Example:
'boray'

This option must be specified
when the 'hdfs' option specifies
the nameservice ID (see 'hdfs'
above).

partitions_per_node Number of
cores available
to the JVM

Integer value > 0 and
< 128

The number of partitions
allocated per node for this table.

readonly False True or False Specifies whether the tables
managed by this Connector are
read-only. If the readonly
option is set to true, then all
write operations (INSERT,
CREATE, DROP and TRUNCATE)
will fail.

By default, the READONLY
option is set to FALSE.

terminator '\n' An optional single
character, followed
by one of the
following characters:
\n, \r\n or \r.

Allows the user to specify how
records are terminated.

See 7.10.12.5.10 for more details

use_datanode_hostname FALSE [] | TRUE | FALSE If this option is set to TRUE,
when the Connector accesses an
HDFS data node, the data node
id returned from the Name Node
will be its hostname, instead of
its IP address, which can help
avoid the “cannot access data
node” problem when HDFS is

RapidsDB Release 4.3.3 User Guide Page 227 © Borrui Data Technology Co. Ltd 2022

 installed in a docker or similar
environment

user Non-empty, non-
whitespace string

Specifies the name of the user to
be used when accessing HDFS.

See 12.10.12.3.1 for more details.

NOTES:

1. For a Hadoop Connector, the catalog name will be the name of the Connector, unless

overridden by the “AS” clause

2. When connecting to the Hive Metastore, the schema name will match the Hive database name.

When not connecting to the Hive Metastore, the schema name will be “PUBLIC”

3. The following standard SQL exclusions apply:

• Varchars cannot have a length specification.

• Null, not null designations are not supported. Nulls are allowed for all fields.

• Primary keys are not supported

12.10.12.2 Setting up the Hadoop Connector for HDFS HA Configurations

When HDFS is configured for HA, the Hadoop Connector must have the following options set:

• If the "hdfs" option is used then it must be set to the nameservice ID

• The "nameservice" option must be set and it must specify the nameservice ID.

• The "namenodes" option must be set and it must specify a comma-separated list of the name

nodes

Example 1:

Example 2, the same as example 1 except specifying the ip addresses for the name nodes:

Example 3, using the Hive Metastore (see 12.10.12.10.1):

CREATE CONNECTOR HDFS_TEST1 TYPE HADOOP WITH HDFS='hdfs://boray',

NAMESERVICE='boray', NAMENODES='db01:8020, db02:8020',

FORMAT='delimited', ENCLOSED_BY="'", USER='hdfs' NODE RDP2 NODE RDP3

TABLE …

CREATE CONNECTOR HDFS_TEST1 TYPE HADOOP WITH HDFS='hdfs://boray',

NAMESERVICE='boray', NAMENODES='192.168.10.10:8020, 192.168.10.12:8020',

FORMAT='delimited', ENCLOSED_BY="'", USER='hdfs' NODE RDP2 NODE RDP3

TABLE …

RapidsDB Release 4.3.3 User Guide Page 228 © Borrui Data Technology Co. Ltd 2022

12.10.12.3 Setting up HDFS Access Privileges for the Hadoop Connector (non-Kerberos)

12.10.12.3.1 USER Option
By default, when accessing HDFS the Hadoop Connector will use a user id set to “anonymous”.

The USER option allows the user to specify the userid to be used when accessing the HDFS files specified

for this Connector:

Syntax:

USER='<user name>'

Example:

The Connector HDFS_TEST1 would access HDFS using the userid of 'hdfs'

12.10.12.3.2 SELECT Access

In order for the user to be able to run SELECT queries against any of the tables defined by a Hadoop

Connector, the userid being used by the Hadoop Connector must be given read access to the underlying

HDFS files associated with the tables.

12.10.12.3.3 INSERT Access

In order for the user to be able to run INSERT queries against any of the tables defined by a Hadoop

Connector, the userid being used by the Hadoop Connector must be given write access to the underlying

HDFS files associated with the tables.

12.10.12.3.4 TRUNCATE

In order to be able to run the TRUNCATE command against any of the tables defined by a Hadoop

Connector, the userid being used by the Hadoop Connector must be given write access to the underlying

HDFS files associated with the tables.

12.10.12.3.5 CREATE/DROP TABLE

In order to be able to create and drop tables from the Hive Metastore (see 12.10.12.10), the userid

being used by the Hadoop Connector must be given write access to the underlying HDFS files associated

with the tables.

CREATE CONNECTOR HDFS_HIVEM TYPE HADOOP WITH METASTORE='192.168.10.14:9083',

NAMESERVICE='boray', NAMENODES='db01:8020, db02:8020',

NODE * CATALOG * SCHEMA TPCH_SF1 TABLE * ;

CREATE CONNECTOR HDFS_TEST1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.202:8020', FORMAT='delimited', ENCLOSED_BY="'",

USER='hdfs' NODE RDP2 NODE RDP3

TABLE …

RapidsDB Release 4.3.3 User Guide Page 229 © Borrui Data Technology Co. Ltd 2022

12.10.12.4 Kerberos Authentication

12.10.12.4.1 Overview

The Hadoop Connector also supports the ability to authenticate users using Kerberos. When configuring

the Hadoop Connector the kerberos_user and kerberos_keytab options (see 12.10.12.4.4) instruct the

Hadoop Connector to use Kerberos authentication.

12.10.12.4.2 Setting up for Kerberos Configuration File, krb5.conf

In order for a Hadoop Connector to use Kerberos authentication the Kerberos configuration file used to

configure the Kerberos Admin server, krb5.conf, must be present on each node of the RapidsDB Cluster

where the Hadoop Connector is configured to run. There are several alternatives for where to locate

the configuration file (see

https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/KerberosReq.html for

more information):

• If the system property java.security.krb5.conf is set, its value is assumed to specify the path and

file name. In order to set this property, the following option must be specified when starting up

the RapidsDB Cluster using the bootstrapper:

o ./bootstrapper.sh start --jvm_settings "-Djava.security.krb5.conf=<path to krb5.conf

file>"

For example:

./bootstrapper.sh start --jvm_settings "-Djava.security.krb5.conf=/opt/rdp/krb5.conf”

• If that system property value is not set, then the configuration file is looked for in the directory

<java-home>\lib\security (Windows)

<java-home>/lib/security (Solaris and Linux)

Here <java-home> refers to the directory where the JRE was installed. For example, if

java-home is /user/java/default on Linux, the directory in which the configuration file is

looked for is:

/user/java/default/lib/security

• If the file is still not found, then an attempt is made to locate it as follows:

/etc/krb5.conf (Linux)

12.10.12.4.3 Setting up /etc/hosts File

If there is no DNS server setup on the network to resolve the hostname of the Kerberos Admin Server,

then the /etc/hosts file on each node in the RapidsDB cluster where the Hadoop Connector is configured

to run must have an entry for the host name for the Kerberos Admin server which must match the

admin_server entry from the krb5.conf file.

For example, if the following is from the krb5.conf file:

https://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/KerberosReq.html

RapidsDB Release 4.3.3 User Guide Page 230 © Borrui Data Technology Co. Ltd 2022

[realms]

RDP.COM = {

admin_server = kerberose1

kdc = kerberose1

}

then the /etc/hosts file should have an entry such as the following (where host name kerberose1 has an

ip address of 192.168.10.202):

192.168.10.202 kerberose1

12.10.12.4.4 Configuring the Hadoop Connector to use Kerberos

The following two options must be specified in order to have the Hadoop Connector use Kerberos

authentication:

1. KERBEROS_USER='<Kerberos principal name>' this option specifies the Kerberos principal to

be used for authenticating access to HDFS. The name can optionally include the Kerberos

Realm name, for example, dave@RDP.COM If the Realm is not specified then it will default to

the setting from the krb5.conf file (see 12.10.12.4.2).

Examples:

KERBEROS_USER='dave'

KERBEROS_USER='dave@RDP.COM'

KERBEROS_USER='dave/hr'

KERBEROS_USER='dave/hr@RDP.COM'

2. KERBEROS_KEYTAB='<path to keytab file>' this option specifies the path to the Linux file

that contains the Kerberos keytab file for the user specified by the KERBEROS_USER option

above.

NOTE:

The keytab file must be copied to the same location on each node in the RapidsDB cluster where

the Hadoop Connector is configured to run, and must be configured for read access by the userid

used to start up the RapidsDB cluster. It is highly recommended for security reasons that the

keytab file ONLY be secured for read access by the userid used to startup the RapidsDB Cluster.

Example:

KERBEROS_KEYTAB='/opt/rdp/dave.keytab'

mailto:dave@RDP.COM

RapidsDB Release 4.3.3 User Guide Page 231 © Borrui Data Technology Co. Ltd 2022

12.10.12.4.5 Example Connectors Configured to use Kerberos

The above Connector will authenticate with Kerberos using the Kerberos principal named 'dave',

with the Kerberos keytab file /home/rapids/rdptest/dave.keytab (which must be located on

RapidsDB Cluster nodes RDP2 and RDP3).

This Connector is equivalent to the first Connector assuming that the default Kerberos Realm is

“RDP.COM”.

12.10.12.5 Delimited File Formatting

12.10.12.5.1 Specifying Delimited Format

The Hadoop Connector supports the reading and writing of delimited files. To specify that files are

using the delimited, the “format” option must be set to 'DELIMITED '. For example, at the Connector

level

Or at the table level:

12.10.12.5.2 Delimited Format Options

The Hadoop Connector provides the following set of options as part of the Connector definition for

controlling how the data in delimited files is formatted:

CREATE CONNECTOR KTEST TYPE HADOOP

WITH hdfs='hdfs://192.168.10.202:8020', FORMAT='delimited', ENCLOSED_BY="'",

KERBEROS_USER='dave', KERBEROS_KEYTAB='/home/rapids/rdptest/dave.keytab'

NODE RDP2 NODE RDP3

TABLE …

CREATE CONNECTOR KTEST TYPE HADOOP

WITH hdfs='hdfs://192.168.10.202:8020', FORMAT='delimited', ENCLOSED_BY="'",

KERBEROS_USER='dave@RDP.COM', KERBEROS_KEYTAB='/home/rapids/rdptest/dave.keytab'

NODE RDP2 NODE RDP3

TABLE …

CREATE CONNECTOR PAR1 TYPE HADOOP WITH HDFS='hdfs://192.168.10.15:8020',

FORMAT='delimited' NODE * CATALOG * SCHEMA *

TABLE …

CREATE CONNECTOR PAR1 TYPE HADOOP WITH HDFS='hdfs://192.168.10.15:8020', NODE *

CATALOG * SCHEMA *

TABLE T1 USING (…) WITH format='delimited';

RapidsDB Release 4.3.3 User Guide Page 232 © Borrui Data Technology Co. Ltd 2022

Key: Default Value Value syntax Description

delimiter ',' '<char>'
Non-empty, single
character string

Specifies the field delimiter.

See 12.10.12.5.7 for more details

enclosed_by '<char>[<char>]' or
"'"

Specifies whether a field is
optionally enclosed by a
specified character. This is

 Non-empty, single or
two character string

If the enclosed_by is
a single quote
character then it
must be specified
using double quotes:
"'"
The default is no
enclosed_by

commonly used to specify that
string fields are optionally
enclosed by either a single quote
or double quote character and
that character should not be
included as part of the field data.
If the same character is also
included as part of the field data,
then it must be escaped (see
12.10.12.5.3.1 for more details).

See 12.10.12.5.8 for more details

escape_char '\' '<char>'
Non-empty, single
character string

Specifies the character to be
used as an escape character.
This will allow the user to
include embedded field and
record terminator characters in
the data field as well embedded
quotes in the event that the field
is a string field that is enclosed
within quote characters.

See 12.10.12.5.9 for more details

ignore_header '0' Integer value >= 0 Specifies the number of header
records to be skipped

See 12for more details

terminator '\n' An optional single
character, followed
by one of the
following characters:
\n, \r\n or \r.

Allows the user to specify how
records are terminated.

See 12.10.12.5.10 for more details

12.10.12.5.3 Text Handling

12.10.12.5.3.1. ESCAPE Sequences

There are a set of special characters that only come into effect when the escape character is specified

(by default the escape character is set to a backslash). If the ESCAPE_CHAR is set to '' (empty string)

then the following are just treated as regular text.

In the following table, the ESCAPE_CHAR is set to the backslash character. The data stored will be the

RapidsDB Release 4.3.3 User Guide Page 233 © Borrui Data Technology Co. Ltd 2022

ASCII Character with the exception of NULL, which is stored as a null value:

Escape Sequence ASCII Character

\b A backspace character <x08>

\f A form feed character <x0C>

\n A newline (linefeed) character <x0A>

\r A carriage return character <x0D>

\t A tab character <x09>

\Z ASCII 26 (Control+Z) <x1A>

\N NULL1

\\ \

\<DELIMITER> <DELIMITER>2

\<ENCLOSED_BY> <ENCLOSED_BY>3

\<character> <character>4

Notes:

1. The escape sequence \N is only treated as the null value when that escape sequence is the only
content of the input field. If the input field contains any other characters then \N will not be
treated as an escape sequence, and will just be the character “N” (see 4 below)

2. If the data field is not enclosed, and if the data field includes the DELIMITER character, then the
DELIMITER character must be escaped

3. If the ENCLOSED_BY is set, and if the data field includes the ENCLOSED_BY character then the
ENCLOSED_BY character must be escaped. If the ENCLOSED_BY is 2 characters, then the
escaping ONLY applies to the second character specified by the ENCLOSED_BY

4. For any other 2-character sequence, the escape character will be stripped and the following
character is taken as the input. For example, \J will be stored as the single character “J”

Examples:

Example 1:

ENCLOSED_BY is not set (this is the default)

ESCAPE_CHAR='\' (this is the default)

In the following table, <xnn> refers to the hexadecimal value stored for the character

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited',

CATALOG *

SCHEMA *

TABLE T1 USING (c1 varchar) WITH path='/data/sample/test/t1';

RapidsDB Release 4.3.3 User Guide Page 234 © Borrui Data Technology Co. Ltd 2022

INPUT C1

\N <null value>

'\N' 'N'

\N not on its own N not on its own

\\N not on its own \N not on its own

A tab \t A tab <x09>

Addr 1\nAddr 2 Addr 1<x0A>Addr 2

Other chars \A\B Other chars AB

Part 1\, past 2 Part 1, part 2
Dave’s house Dave’s house

Example 2:

ENCLOSED_BY="'"

ESCAPE_CHAR='\' (this is the default)

In the following table, <xnn> refers to the hexadecimal value stored for the character

INPUT C1
\N <null value>

'\N' <null value>

\N not on its own N not on its own

\\N not on its own \N not on its own

A tab \t A tab <x09>
Addr 1\nAddr 2 Addr 1<x0A>Addr 2

Other chars \A\B Other chars AB

'Part 1, part 2' Part 1, part 2

'Dave\'s house' Dave's house

Example 3:

ENCLOSED_BY='{}'

ESCAPE_CHAR='\' (this is the default)

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited', enclosed_by="'"

CATALOG *

SCHEMA *

TABLE T1 USING (c1 varchar) WITH path='/data/sample/test/t1';

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited', enclosed_by='{}'

RapidsDB Release 4.3.3 User Guide Page 235 © Borrui Data Technology Co. Ltd 2022

In the following table, <xnn> refers to the hexadecimal value stored for the character

INPUT C1

\N <null value>

{\N} <null value>

{\N not on its own} N not on its own

{\\N not on its own} \N not on its own

{A tab \t} A tab <x09>

{ Addr 1\nAddr 2} Addr 1<x0A>Addr 2

{Other chars \A\B} Other chars AB

{Part 1, part 2} Part 1, part 2

{ Dave's house} Dave's house

{{My home\}} {My home}

12.10.12.5.3.2. Handling of Leading and Trailing Blanks

Leading and trailing space characters are considered part of a VARCHAR column. NOTE: When the

ENCLOSED_BY is set, the leading and trailing space characters are ONLY those characters contained

within the enclosed string (see examples below for more on this), any space characters outside of the

enclosing characters are ignored.

Examples:

Example 1:

ENCLOSED_BY is not set (this is the default)

In the following <x20> is used to signify an ASCII space character (hex value 20)

CATALOG *

SCHEMA *

TABLE T1 USING (c1 varchar) WITH path='/data/sample/test/t1';

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited'

CATALOG *

SCHEMA *

TABLE T1 USING (c1 integer, c2 varchar, c3 integer) WITH path='/data/sample/test/t1';

RapidsDB Release 4.3.3 User Guide Page 236 © Borrui Data Technology Co. Ltd 2022

INPUT C1 C2 C3

1,<x20><x20><x20>3 leading,3 1 <x20><x20><x20>3 leading 3

1,<x20><x20><x20>'3 leading',3 1 <x20><x20><x20>'3 leading' 3

1,<x20><x20><x20>'3 leading\,2
trailing' ,3

1 <x20><x20><x20>'3 leading,2 trailing'<x20><x20> 3

1,'<x20><x20><x20>3 leading\,2
trailing ',3

1 '<x20><x20><x20>3 leading,2 trailing<x20><x20>' 3

Example 2:

ENCLOSED_BY="'"

INPUT C1 C2 C3

1,<x20><x20><x20>3 leading,3 1 <x20><x20><x20>3 leading 3

1,<x20><x20><x20>'3 leading',3 1 3 leading 3

1,<x20><x20><x20>'3 leading,2
trailing' ,3

1 3 leading,2 trailing 3

1,'<x20><x20><x20>3 leading,2
trailing ',3

1 <x20><x20><x20>3 leading,2 trailing<x20><x20> 3

Example 3:

ENCLOSED_BY='{}'

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited', enclosed_by="'"

CATALOG *

SCHEMA *

TABLE T1 USING (c1 integer, c2 varchar, c3 varchar) WITH path='/data/sample/test/t1';

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited', enclosed_by='{}'

CATALOG *

SCHEMA *

TABLE T1 USING (c1 integer, c2 varchar, c3 integer) WITH path='/data/sample/test/t1';

RapidsDB Release 4.3.3 User Guide Page 237 © Borrui Data Technology Co. Ltd 2022

INPUT C1 C2 C3

1,<x20><x20><x20>3 leading,3 1 <x20><x20><x20>3 leading 3

1,<x20><x20><x20>{3 leading},3 1 3 leading 3

1,<x20><x20><x20>{3 leading,2
trailing} ,3

1 3 leading,2 trailing 3

1,{<x20><x20><x20>3 leading,2
trailing },3

1 <x20><x20><x20>3 leading,2 trailing<x20><x20> 3

12.10.12.5.3.3. EMPTY STRINGS

An empty (zero-length) string is defined as a field with two adjacent enclosed_by characters (see

12.10.11.5.8 for more information on enclosed_by characters). For example, the second field in the

sample record below would be interpreted as an empty string assuming that the enclosed_by character

is the single quote character:

The statement select char_length(c2) from hadoop.public.test; would return the value zero for the

record above after it was loaded.

NOTE – this is different from an empty field, where no value is specified, which is interpreted as a NULL

value (see 12.10.12.5.6 for more information on nulls) as shown in the example below:

12.10.12.5.4 DATE_FORMAT (DATES and TIMESTAMPS)

The user can specify the format for date strings for Dates and Timestamps. Timestamps consist of a

date portion followed by a time portion. The format for the date portion can be specified using the

DATE_FORMAT option (see below), whereas the format for the time portion is fixed as

HH:MM:SS[.NNNNNN]. If the time component is missing then the time will be set as 00:00:00.

As for all data fields, dates and timestamps can be optionally enclosed using the ENCLOSED_BY

character(s) (see 12.10.12.5.8).

The date format can be specified as any combination of the following along with any specified separator

character:

• YYYY

• MM

• DD

Where

1,'',C2 is an empty string

1,,C2 is a NULL

RapidsDB Release 4.3.3 User Guide Page 238 © Borrui Data Technology Co. Ltd 2022

• YYYY can be entered as either 4 digits or 2 digits. In the case of 2 digits, 2000 will be added to
the year. For example, an input of 18 would be treated as 2018

• MM can be entered as 1 or 2 digits in the range 1-12.

• DD can entered as 1 or 2 digits in the range 1-31 (with applicable rules applied for validating the
correct number of days in a month)

Some example formats:

• DATE_FORMAT='MM-DD-YYYY'

• DATE_FORMAT='YYYY.MM.DD’

• DATE_FORMAT='DD/MM/YYYYY'
• DATE_FORMAT='YYYY-DD-MM'

The default for DATE_FORMAT is 'YYYY-MM-DD'

The table below shows some examples:

Data Type DATE_FORMAT INPUT TREATED AS

Date 'MM-DD-YYYY' '4-30-18'
'10-31-1998'

04-30-2018
10-31-1998

Timestamp 'MM-DD-YYYY' '4-30-18 09:00:00'
'10-31-1998'

04-30-2018 09:00:00
10-31-1998 00:00:00

Timestamp 'YYYY.MM.DD' '2018.03.31'
'18.05.30 09:00:00.123456'

2018.03.31 00:00:00
2018.05.30 09:00:00.123456

Timestamp '2018-03-31' 2018-03-31 00:00:00

Timestamps with a fractional scale of more than 6 digits will get truncated to 6 digits. For example:

• 2018-01-01 09:00:00.12345678 would get stored as 2018-01-01 09:00:00.123456

Example:

This example will set the date format for table t1 to be YYYY.MM.DD

12.10.12.5.5 BOOLEANS

The table below specifies the valid input values for booleans:

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited', date_format='YYYY.MM.DD'

CATALOG *

SCHEMA *

TABLE T1 USING (c1 integer, c2 date, c3 timestamp) WITH path='/data/sample/test/t1';

RapidsDB Release 4.3.3 User Guide Page 239 © Borrui Data Technology Co. Ltd 2022

Column value Possible Inputs

FALSE 0
f
F
False1

TRUE >0
t
T
True1

Notes:

1. The string false or true can be specified in mixed case, for example False, false. FALSE and fALSE
are all valid.

12.10.12.5.6 NULL Handling

There are three ways to specify a null value for a field:

1. Using the keyword NULL – a 4-character field with just the 4 characters null (case independent).
NOTE, a null value cannot be specified as an enclosed field using the ENCLOSED_BY (see
12.10.12.5.8) character(s). For example, if ENCLOSED_BY is set to a single quote then the input
field 'null' would be stored as the 4-character string null and not as a null value.

2. An empty field – an empty field is defined as two adjacent delimiters, or a delimiter followed
immediately by the record terminator.

3. \N – a 2-character field with just \N

Example 1:

ENCLOSED_BY is not set (this is the default)

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited'

CATALOG *

SCHEMA *

TABLE T1 USING (c1 integer, c2 varchar, c3 integer) WITH path='/data/sample/test/t1';

RapidsDB Release 4.3.3 User Guide Page 240 © Borrui Data Technology Co. Ltd 2022

INPUT C1 C2 C3

NULL,Null,nULL <null value> <null value> <null value>

null,\N,NULL <null value> <null value> <null value>

,, <null value> <null value> <null value>

1,'null',3 1 'null'1 3

1, null,3 1 <x20>null2 3

1,'\N',null 1 'N'3 <null value>

1,\N is not a null,3 1 N is not a null4

1,'\\N',null 1 '\N'5 <null value>
1,The word null,3 1 The word null 3

1,'The word null',3 1 ‘The word null‘ 3

1,'null is not a null',3 1 'null is not a null' 3

Notes:

1. The reason that column C2 is the 6-character string 'null' is because there is no enclosed_by
character which means that the first character of the field is the single quote character, and so
this is a 6-character field (to match the keyword “null” the field has to be a 4-character field).

2. In this example, the second field has a leading space character followed by the string “null”.
Due to the fact that leading blanks are significant (see 12.10.12.5.3.2), this is a 5-character field
due to the leading space, and so it will not match the keyword “null” because to do so requires
the field to only have the 4 characters “null”. The string <x20> is used to signify the ASCII SPACE
character (hex 20).

3. The reason that column C2 is the string 'N' is because there is no enclosed_by character which
means that the first character of the field is the single quote character, and so the escaping for
\N as null does not apply as the field does not contain just the two character string “\N”, and so
this is not an escape sequence, it will be treated as the single character N

4. The reason that column C2 is the string 'N is not a null' is because the sequence \N is not the
only content for the field, and so the string “\N” will not be treated as an escape sequence, it
will be treated as the single character N. This is similar to note 3 above.

5. The string “\\” is a valid escape sequence for the backslash character

Example 2:

ENCLOSED_BY= "'"

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited', enclosed_by="'"

CATALOG *

SCHEMA *

TABLE T1 USING (c1 integer, c2 varchar, c3 integer) WITH path='/data/sample/test/t1';

RapidsDB Release 4.3.3 User Guide Page 241 © Borrui Data Technology Co. Ltd 2022

INPUT C1 C2 C3

NULL,Null,nULL <null value> <null value> <null value>

null,\N,NULL <null value> <null value> <null value>

,, <null value> <null value> <null value>

1, 'null',3 1 null1 3

1, null,3 1 <x20>null2 3

1,'\N',null 1 N3 <null value>

1,\N is not a null,3 1 N is not a null4 3

1, '\\N',null 1 \N5 <null value>
1,The word null,3 1 The word null 3

1, 'The word null',3 1 The word null 3

1,'null is not a null',3 1 null is not a null 3

Notes:

1. The reason that column C2 is the string null and not a null value is because the ENCLOSED_BY
character is set, and null values cannot be enclosed.

2. In this example, the second field has a leading space character followed by the string “null”.
Due to the fact that leading blanks are significant (see 12.10.12.5.3.2), this is a 5-character field
due to the leading space. The string <x20> is used to signify the ASCII SPACE character (hex 20).

3. The reason that column C2 is the character N is because the ENCLOSED_BY character is set, and
null values cannot be enclosed, and so the sequence \N is not treated as a special character
sequence, it is treated as the single character N.

4. The reason that column C2 is the string “N is not a null” is because the sequence \N is not the
only content for the field, and so \N will not be treated as an escape sequence, it will be treated
as the single character N

5. The string “\\” is a valid escape sequence for the backslash character

Example 3:

ENCLOSED_BY='{}'

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited', enclosed_by='{}'

CATALOG *

SCHEMA *

TABLE T1 USING (c1 integer, c2 varchar, c3 integer) WITH path='/data/sample/test/t1';

RapidsDB Release 4.3.3 User Guide Page 242 © Borrui Data Technology Co. Ltd 2022

INPUT C1 C2 C3

NULL,Null,nULL <null value> <null value> <null value>

null,\N,NULL <null value> <null value> <null value>

,, <null value> <null value> <null value>

1, {null},3 1 null1 3

1, {\N},null 1 N2 <null value>

1,{\N is not a null},3 1 N is not a null3 3

1, {\\N},null 1 \N4 <null value>

1,The word null,3 1 The word null 3
1, {The word null},3 1 The word null 3

1, {null is not a null},3 1 null is not a null 3

Notes:

1. The reason that column C2 is the string null and not a null value is because the ENCLOSED_BY
character is set, and null values cannot be enclosed.

2. The reason that column C2 is the character N is because the ENCLOSED_BY character is set, and
null values cannot be enclosed, and so the sequence \N is not treated as a special character
sequence, it is treated as the single character N.

3. The reason that column C2 is the string “N is not a null” is because the sequence \N is not the
only content for the field, and so \N will not be treated as an escape sequence, it will be treated
as the single character N

4. The string “\\” is a valid escape sequence for the backslash character

12.10.12.5.7 DELIMITER='<char> | \t'

Specifies the field delimiter character. The field delimiter can be a single character or the tab character

(\t).

Default: ',' (comma)

Example:

The input file has the fields delimited by the dollar character '$'.

Input data:

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited', delimiter='$'

CATALOG *

SCHEMA *

TABLE T1 USING (c1 integer, c2 varchar, c3 varchar) WITH path='/data/sample/test/t1';

RapidsDB Release 4.3.3 User Guide Page 243 © Borrui Data Technology Co. Ltd 2022

The resulting data returned from a select * from t1 would be

12.10.12.5.8 ENCLOSED_BY='<char>[<char>]' | "'”

Specifies whether an input field is optionally enclosed by the specified character or by two characters

where the first character will define the start of the enclosing, and the second character will define the

end of the enclosing. This is commonly used to specify that character fields are enclosed by either a

single quote or double quote character and that character should not be included as part of the field

data.

NOTES

1. To explicitly specify a single quote as the delimiter, you must enclose the single quote inside

double quotes, all other characters are specified using single quotes.

2. Use of the ENCLOSED_BY for character fields is optional, and so an input record could include

some fields using the enclosed_by character with other character fields not using the

enclosed_by character as shown in the example below.

3. If the ENCLOSED_BY character(s) is also included as part of the field data, then the character(s)

must be escaped (see ESCAPE_CHAR 12.10.12.5.9).

Default: no enclosing character(s)

Examples:

ENCLOSED_BY INPUT DATA TO BE STORED DATA TYPE VALID?
 'DAVE's DATA' 'DAVE's DATA' VARCHAR Y
 null <null value> VARCHAR Y
 'null' 'null' VARCHAR Y
 '9' INVALID INTEGER N
 '9' INVALID DECIMAL N
 '9' INVALID FLOAT N
 '30-04-2018 09:00:00' INVALID TIMESTAMP N
 'T' INVALID BOOLEAN N
 DAVE's DATA DAVE's DATA VARCHAR Y
 9 9 INTEGER Y
 9 9 DECIMAL Y
 9 9 FLOAT Y
 30-04-2018 09:00:00 30-04-2018 09:00:00 TIMESTAMP Y
 T T BOOLEAN Y

1$This is a text field$Second text field

C1 C2

-- --

1 This is a text field

C3

--

Second text field

RapidsDB Release 4.3.3 User Guide Page 244 © Borrui Data Technology Co. Ltd 2022

ENCLOSED_BY="'" 'DAVE\'s DATA' DAVE's DATA VARCHAR Y
 'DAVE's DATA' INVALID VARCHAR N
 'null' null VARCHAR Y
 null <null value> VARCHAR Y
 '9' 9 INTEGER Y
 '9' 9 DECIMAL Y
 '9' 9 FLOAT Y
 '30-04-2018 09:00:00' 30-04-2018 09:00:00 TIMESTAMP Y
 'T' T BOOLEAN Y
 DAVE's DATA DAVE's DATA VARCHAR Y
 9 9 INTEGER Y
 9 9 DECIMAL Y
 9 9 FLOAT Y
 30-04-2018 09:00:00 30-04-2018 09:00:00 TIMESTAMP Y
 T T BOOLEAN Y

ENCLOSED_BY='[]' [DAVE's DATA] DAVE's DATA VARCHAR Y
 {null} null VARCHAR Y
 null <null value> VARCHAR Y
 [9] 9 INTEGER Y
 [9] 9 DECIMAL Y
 [9] 9 FLOAT Y
 [30-04-2018 09:00:00] 30-04-2018 09:00:00 TIMESTAMP Y
 [T] T BOOLEAN Y
 [WITH \[\]] WITH [] VARCHAR Y
 [WITH[]] INVALID VARCHAR N
 'DAVE's DATA' 'DAVE's DATA' VARCHAR Y
 '9' INVALID INTEGER N
 '9' INVALID DECIMAL N
 '9' INVALID FLOAT N
 '30-04-2018 09:00:00' INVALID TIMESTAMP N
 'T' INVALID BOOLEAN N
 DAVE's DATA DAVE's DATA VARCHAR Y
 9 9 INTEGER Y
 9 9 DECIMAL Y
 9 9 FLOAT Y
 30-04-2018 09:00:00 30-04-2018 09:00:00 TIMESTAMP Y
 T T BOOLEAN Y

Example 1:

The input records below contains fields which are enclosed in double quotes.

RapidsDB Release 4.3.3 User Guide Page 245 © Borrui Data Technology Co. Ltd 2022

Input data:

The resulting data returned from a select * from t1 would be:

C1

--

 C2

--

Record 1 Some text

Record 2 Some more text

Example 2:

The input records below contains fields which are enclosed in single quotes. The second record includes

the enclosed_by character as part of the second field, and so the enclosed_by character has to be

escaped (see 12.10.12.5.8). Also note that the first field does not use the enclosed_by character which

is allowed because the enclosed_by character, when specified, is optional for any given field.

Input data:

The resulting data returned from a select * from t1 would be:

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited', enclosed_by= '"'

CATALOG *

SCHEMA *

TABLE T1 USING (c1 varchar, c2 varchar) WITH path='/data/sample/test/t1';

"Record 1", "Some text"

"Record 2", "Some more text"

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited', enclosed_by= "'"

CATALOG *

SCHEMA *

TABLE T1 USING (c1 integer, c2 varchar) WITH path='/data/sample/test/t1';

1, 'This is an example of a field that includes the delimiter character, a comma'

2, 'This field includes the enclosed_by character \''

RapidsDB Release 4.3.3 User Guide Page 246 © Borrui Data Technology Co. Ltd 2022

Example 3:

The input records below contains fields which are enclosed in {}.

Input data:

The resulting data returned from a select * from t1 would be:

12.10.12.5.9 ESCAPE_CHAR='<char>'

Specifies the character to be used as the escape character.

Default: '\' (backslash)

Example:

The input record below contains a character field that is not enclosed in quotes. In this example we are

using the character '^' as the escape character. The character field includes both the field separator

(comma) and a newline character (note that the newline character uses the escape_char).

C1 C2

-- --

1 This is an example of a field that includes the delimiter character, a comma

2 This field includes the enclosed_by character '

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited', enclosed_by= '{}'

CATALOG *

SCHEMA *

TABLE T1 USING (c1 integer, c2 varchar) WITH path='/data/sample/test/t1';

1, {This is an example of a field that includes the delimiter character, a comma}

2, {This field includes the enclosed_by characters: \{\}}

C1 C2

-- --

1 This is an example of a field that includes the delimiter character, a comma

2 This field includes the enclosed_by characters: {}

RapidsDB Release 4.3.3 User Guide Page 247 © Borrui Data Technology Co. Ltd 2022

Input data:

The resulting data returned from a select * from t1 would be:

12.10.12.5.10 TERMINATOR='[<char>]\n' | '[<char>]\r\n' | '[<char>]\r']

Specifies that records are terminated by an optional character followed by one of the following

character sequences: \n, \r\n or \r.

Default: '\n'

Example 1:

The input file is a delimited file where each record is terminated by \r\n.

Input data: in the example input data below the sequence <\r><\n> indicates the ANSI characters for \r

and \n:

The resulting data returned from a select * from t1 would be

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited', escape_char='^'

CATALOG *

SCHEMA *

TABLE T1 USING (c1 integer, c2 varchar) WITH path='/data/sample/test/t1';

1,Field with special chars: ^,^nThis is the second line,Text should be on 2 lines

C1 C2

-- --

1 Field with special chars: ,

This is the second line Text should be on 2 lines

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited', terminator='\r\n'

CATALOG *

SCHEMA *

TABLE T1 USING (c1 integer, c2 varchar, c3 varchar) WITH path='/data/sample/test/t1';

1,This is a text field,This is a second text field<\r><\n>

RapidsDB Release 4.3.3 User Guide Page 248 © Borrui Data Technology Co. Ltd 2022

Example 2:

The input file is a delimited file where the delimiter is '|' and each record is terminated by '|\n'.

Input data: in the example input data below the sequence <\n> indicates the ANSI character for \n:

The resulting data returned from a select * from t1 would be

12.10.12.5.11 IGNORE_HEADER

Specifies the number of header records to be ignored at the start of the file.

Example:

The input record below contains a header record followed by a record with three fields separated by a

comma (the default delimiter).

C1 C2

-- --

C3

--

1 This is a text field This is a second text field

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited', delimiter='|', terminator='|\n'

CATALOG *

SCHEMA *

TABLE T1 USING (c1 integer, c2 varchar) WITH path='/data/sample/test/t1';

1|This is a text field|This is a second text field|<\n>

C1 C2

-- --

C3

--

1 This is a text field This is a second text field

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited', ignore_header='1'

CATALOG *

SCHEMA *

TABLE T1 USING (c1 integer, c2 varchar, c3 varchar) WITH path='/data/sample/test/t1';;

RapidsDB Release 4.3.3 User Guide Page 249 © Borrui Data Technology Co. Ltd 2022

C1 C2 C3

1 This is the first field This is the second text field

Input data:

The resulting data returned from a select * from t1 would be:

12.10.12.5.12 ERROR HANDLING

In the event that the Hadoop Connector is unable to process the data due to a problem with the format

of the data, the Hadoop Connector will issue one of the following errors and stop processing the query.

• The TERMINATOR definition is not consistent with data file

This error occurs when the record terminator does not match the TERMINATOR clause. For

example, if the data file was from Windows and terminated with '\r\n', then the TERMINATOR

clause must be to TERMINATOR='\r\n'

• Invalid data in Hadoop : definition of table has 5 columns while the data record has 1 fields

This error occurs when the DELIMITER used in the data file does not match the DELIMITER

specified by the DELIMITER clause.

• Invalid data in Hadoop : Timestamp format must be yyyy-mm-dd hh:mm:ss[.fffffffff]

erroneous line : aa,99.99,'2012-01-01 09:00:00',true,valid data

In the event that the data value does not match the data type for the associated column then

the Hadoop Connector will report an error similar to the error message above, and the

“erroneous line” will show the record in the data file that was being processed when the error

occurred.

12.10.12.6 ORC Format

12.10.12.6.1 Specifying ORC Format

The Hadoop Connector supports the reading and writing of files using the ORC format. To specify that

files are using ORC the “format” option must be set to 'ORC'. For example, at the Connector level

Or at the table level:

C1 INTEGER,C2 VARCHAR,C3 VARCHAR

1,This is the first field,This is the second text field

CREATE CONNECTOR PAR1 TYPE HADOOP WITH HDFS='hdfs://192.168.10.15:8020',

FORMAT='orc' NODE * CATALOG * SCHEMA *

TABLE …

RapidsDB Release 4.3.3 User Guide Page 250 © Borrui Data Technology Co. Ltd 2022

12.10.12.6.2 ORC Format Options

The Hadoop Connector provides the following set of options as part of the Connector definition for

controlling how the data in ORC files is formatted:

Key: Default Value Value syntax Description

compression 'zlib' 'lz4' |
'snappy' |
'zlib' |
'zstd'

Specifies the type of
compression used

See 7.10.12.7.3 for more details

stripe_size '262144000' Integer value >= 0 Specifies the number of bytes in
each stripe

The default is 250MB

12.10.12.6.3 Compression

The Hadoop Connector supports reading and writing compressed ORC files. The Hadoop Connector

supports lz4, snappy zlib, and zstd compression. The option “compression” is provided to allow the user

to specify the compression being used:

• compression='lz4' specifies lz4 compression

• compression='snappy' specifies snappy compression

• compression='zlib' specifies zlib compression

• compression='zstd' specifies zstd compression

The default compression is zlib.

Example:

The above Connector specifies that by default all of the files associated with the tables owned by this

Connector are using the ORC file format with lz4 compression.

CREATE CONNECTOR PAR1 TYPE HADOOP WITH HDFS='hdfs://192.168.10.15:8020', NODE *

CATALOG * SCHEMA *

TABLE T1 USING (…) WITH format='orc';

CREATE CONNECTOR PAR1 TYPE HADOOP WITH HDFS='hdfs://192.168.10.15:8020', FORMAT='orc' ,

COMPRESSION='lz4' NODE * CATALOG * SCHEMA *

TABLE …

RapidsDB Release 4.3.3 User Guide Page 251 © Borrui Data Technology Co. Ltd 2022

12.10.12.7 Parquet Format

12.10.12.7.1 Specifying Parquet Format

The Hadoop Connector supports the reading and writing of files using the Parquet format. To specify

that files are using Parquet the “format” option must be set to 'PARQUET'. For example, at the

Connector level

Or at the table level:

12.10.12.7.2 Parquet Format Options

The Hadoop Connector provides the following set of options as part of the Connector definition for

controlling how the data in parquet files is formatted:

Key: Default Value Value syntax Description

blocksize HDFS block
size

Integer value >= 0 Specifies the Parquet file block
size

compression 'gzip' |
'lz4' |
'snappy'

Specifies the type of
compression used

See 7.10.12.7.3 for more details

dictionary_pagesize '65536' Integer value >= 0 Specifies the Parquet dictionary
page size

pagesize '65536' Integer value >= 0 Specifies the parquet file page size

12.10.12.7.3 Compression

The Hadoop Connector supports reading and writing compressed Parquet files. The Hadoop Connector

supports gzip, snappy and lz4 compression. The option “compression” is provided to allow the user to

specify the compression being used:

• compression= 'gzip' specifies gzip compression

• compression= 'snappy' specifies snappy compression

• compression='lz4' specifies lz4 compression

Example:

CREATE CONNECTOR PAR1 TYPE HADOOP WITH HDFS='hdfs://192.168.10.15:8020',

FORMAT='parquet' NODE * CATALOG * SCHEMA *

TABLE …

CREATE CONNECTOR PAR1 TYPE HADOOP WITH HDFS='hdfs://192.168.10.15:8020', NODE *

CATALOG * SCHEMA *

TABLE T1 USING (…) WITH format='parquet';

RapidsDB Release 4.3.3 User Guide Page 252 © Borrui Data Technology Co. Ltd 2022

The above Connector specifies that by default all of the files associated with the tables owned by this

Connector are using the Parquet file format with gzip compression.

12.10.12.8 Configuring Character Set

By default, the Hadoop Connector will read (and write) HDFS files in the character encoding specified by

the LANG setting for the Linux userid that was used to start the RapidsDB Cluster. The user can specify

a specific character encoding to be used when reading and writing HDFS files using the following option:

• CHARSET= '<character set encoding>'

Where, <character set encoding> is the identifier for the character set used by Java

(https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html), for example GBK, or

GB18030.

Examples:

4. The Connector HDFS_GBK_TEST below is configured by default to have all files encoded in the

GBK character set:

5. For the HDFS_TEST2 Connector below, the file associated with table GBK_TEST_1K is encoded

using the GBK character set, and the file associated with the table GB18030_TEST_1K is encoded

using the GB18030 character set:

12.10.12.9 Hive-style Partitioning: PARTITION BY VALUE ON

The PARTITION BY VALUE ON clause allows the user to specify the columns to be used when the

underlying files are organized using Hive-style partitioning. This feature is supported for both delimited

CREATE CONNECTOR PAR1 TYPE HADOOP WITH HDFS='hdfs://192.168.10.15:8020', FORMAT='parquet' ,

COMPRESSION='gzip' NODE * CATALOG * SCHEMA *

TABLE …

CREATE CONNECTOR HDFS_GBK_TEST TYPE HADOOP WITH HDFS='hdfs://192.168.10.15:8020',

FORMAT='delimited', ENCLOSED_BY="'", CHARSET='GBK' NODE * CATALOG * SCHEMA *

TABLE …

CREATE CONNECTOR HDFS_TEST2 TYPE HADOOP WITH HDFS='hdfs://192.168.10.15:8020',

FORMAT='delimited', ENCLOSED_BY="'" NODE * CATALOG * SCHEMA *

TABLE GBK_TEST_1K USING (ROW_ID INTEGER, ASCII_COL VARCHAR, GBK_COL1 VARCHAR,

GBK_COL2 VARCHAR) WITH path='/user/rapids/dave/gbkdata/GBKTest_Data_1K',

CHARSET='GBK'

TABLE GB18030_TEST_1K USING (ROW_ID INTEGER, ASCII_COL VARCHAR, GBK_COL1

VARCHAR, GBK_COL2 VARCHAR) WITH

path='/user/rapids/dave/gbkdata/GB18030Test_Data_1K', CHARSET='GB18030';

https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html

RapidsDB Release 4.3.3 User Guide Page 253 © Borrui Data Technology Co. Ltd 2022

and Parquet files. With Hive-style partitioning the data stored in HDFS is arranged in directories where

the directory names match the values for columns in the table. For example, in the HDFS file structure

below, the data is partitioned over the columns “region” and “country”, and so the files under

/data/user/region=North America/country=US would match with a region of “North America” and

country of “US”.

/data/user/region=North America/country=US

/data/user/region=North America/country=CA

/data/user/region=South America/country=BR

/data/user/region=South America/country=ME

When a query of the form SELECT <column list> FROM <table> WHERE REGION='North America' AND

COUNTRY='US'; is submitted, the Hadoop Connector will use the predicate “REGION='North America'

AND COUNTRY='US' “ to restrict the files to be read to those files in the directory

/data/user/region=North America/country=US.

Below is an example Connector that is using Hive-style partitioning, where the partitioning columns are

region and country:

NOTE:

1. The partitioning columns must be VARCHAR columns

2. The column names are case-insensitive and so the following two queries are equivalent:

select * from user where region='North America' and country='US';

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited', delimiter='|'

CATALOG *

SCHEMA *

TABLE user

USING (

userid INTEGER,

first_name VARCHAR,

last_name VARCHAR,

address1 VARCHAR,

address2 VARCHAR,

city VARCHAR,

zip_code VARCHAR,

state VARCHAR,

region VARCHAR,

country VARCHAR

) PARTITION BY VALUE ON (region, country) WITH path='/data/user';

RapidsDB Release 4.3.3 User Guide Page 254 © Borrui Data Technology Co. Ltd 2022

select * from user where REGION='North America' and country='US';

3. The values specified for the partitioning columns are case-sensitive and must match the case of

the HDFS directory names. Based on the example Connector definition above, the second query

below would fail to match on the country column and hence return zero rows:

select * from user where region=‘North America' and country='US’;

select * from user where region=‘North America' and country=‘us’;

4. While the columns region and country are defined as part of the table schema, the underlying

data files DO NOT include the data for those columns. The values for the region and country

columns are derived from the values associated with those columns in the HDFS directory

structure. For example, in the following directory structure, the values for the region column

would be “North America” and “South America”, and for the country column would be “US”,

“CA”, “BR” and “ME”:

/data/user/region=North America/country=US

/data/user/region=North America/country=CA

/data/user/region=South America/country=BR

/data/user/region=South America/country=ME

A query of the form select * from user where region = 'North America' and country = 'CA'; would

result in the Hadoop Connector accessing all of the data files in the directory

data/user/region=North America/country=CA, and for each row retrieved the value for the

region column would be “North America” and the value for the country column would be “CA”.

12.10.12.10 Hive Metatstore Integration

The Hadoop Connector supports accessing the Hive Metastore to get the schema information for any of

the supported table types (see 12.10.12.10.2). The user can specify the Hive databases and tables to be

accessed (see 12.10.12.10.1) and then issue SELECT, INSERT, TRUNCATE or DROP TABLE commands

against those tables. In addition the user can create new tables (see 12.10.12.10.4) that will be

registered in the specified Hive database, and can drop any tables from the Hive Metastore that the

Hadoop Connector has access to.

12.10.12.10.1 Configuring Hive Metastore Access

To configure a Hadoop Connector to access the Hive Metastore, the METASTORE option must be

specified and it must be set to the ip address and port number for the Hive Metastore. The SCHEMA

option is then used to specify the Hive database(s) to be accessed and it can be qualified with the

INCLUDES clause to restrict the tables to be accessed from the specified database.

Examples:

CREATE CONNECTOR CUSTOMER TYPE HADOOP WITH metastore='192.168.10.15:9083',

PARTITIONS_PER_NODE='1' NODE * CATALOG * SCHEMA customer;

RapidsDB Release 4.3.3 User Guide Page 255 © Borrui Data Technology Co. Ltd 2022

In the above example, the CUSTOMER Connector would provide access to the tables defined in the Hive

customer database.

In the above example, the SALES Connector would provide access to the tables defined in the Hive

customer and sales databases.

12.10.12.10.1.1. Configuring Tables to be Accessed using INCLUDES

The INCLUDES clause supports three different ways to specify the names of the tables to be accessed as

described in the following sections.

12.10.12.10.1.1.1. List of Table Names

The user can specify a comma-separated list of table names as shown in the example below:

In the above example, the SALES Connector would provide access to the customers_east and

customers_west tables from the Hive customer database, and from the stores, products and inventory

tables from the Hive sales database.

12.10.12.10.1.1.2. Wildcarding

The user can specify a wildcarded string that will result in all of the tables that match the wildcard

expression being included. Note that you can only specify one wildcard string, If you want to specify

multiple wildcards then you can do the equivalent using a regex expression (see 12.10.12.10.1.1.3)

In the above example, the SALES Connector would provide access to all tables from the Hive customer

database where the table names start with the string “cust”.

12.10.12.10.1.1.3. Regex

The user can specify any regex expression that will result in all of the tables that match the regex

expression being included.

CREATE CONNECTOR SALES TYPE HADOOP WITH metastore='192.168.10.15:9083',

PARTITIONS_PER_NODE='1' NODE * CATALOG * SCHEMA customer, sales;

CREATE CONNECTOR SALES TYPE HADOOP WITH metastore='192.168.10.15:9083',

PARTITIONS_PER_NODE='4', USER='rapids' NODE * CATALOG *

SCHEMA customer WITH INCLUDES='customers_east, customers_west'

SCHEMA sales WITH INCLUDES='stores, products, inventory';

CREATE CONNECTOR SALES TYPE HADOOP WITH metastore='192.168.10.15:9083',

PARTITIONS_PER_NODE='4', USER='rapids' NODE * CATALOG *

SCHEMA customer WITH INCLUDES='cust*';

CREATE CONNECTOR SALES TYPE HADOOP WITH metastore='192.168.10.14:9083',

PARTITIONS_PER_NODE='4', USER='rapids' NODE * CATALOG *

SCHEMA sales WITH INCLUDES='{^(cust).*|^(orders).*}';

RapidsDB Release 4.3.3 User Guide Page 256 © Borrui Data Technology Co. Ltd 2022

In the above example, the SALES Connector would provide access to all tables from the Hive customer

database where the table names start with the string “cust” or the string “orders”.

12.10.12.10.2 Supported Hive Table Types

The Hadoop Connector supports access to the following Hive table types:

• Delimited (org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe), where the following Hive

options apply:

o ROW FORMAT DELIMITED

o STORED AS TEXTFILE

o For date and timestamp columns, only the following formats are supported:

▪ 'yyyy-MM-dd'

▪ 'yyyy-MM-ddHH:mm:ss'

o The following additional options are also supported:

▪ FIELDS TERMINATED BY

▪ ESCAPED BY

▪ NULL DEFINED AS

o Compression is not supported

• ORC (org.apache.hadoop.hive.ql.io.orc.OrcSerde)

• Parquet (org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe)

The Hadoop Connector will ignore any tables that do not have the above table types, or any tables that

include unsupported data types (see 12.10.12.10.3).

12.10.12.10.3 Mapping of Hive Data Types

Only tables with the following Hive data types will be supported, tables with any other data types will be

ignored:

Hive Datatype RDP Datatype

TINYINT
SMALLINT
INT
BIGINT
BOOLEAN
FLOAT
DOUBLE
DOUBLE PRECISION
STRING
TIMESTAMP
DECIMAL
DECIMAL(p,n)
DATE
VARCHAR(n)
CHAR(n)

INTEGER(8)
INTEGER(16)
INTEGER(32)
INTEGER
BOOLEAN
FLOAT
FLOAT
FLOAT
VARCHAR
TIMESTAMP
DECIMAL
DECIMAL(p,n)
DATE
VARCHAR
VARCHAR

RapidsDB Release 4.3.3 User Guide Page 257 © Borrui Data Technology Co. Ltd 2022

12.10.12.10.4 CREATE TABLE

The user can create new tables to be registered in the Hive Metastore using the Hive database

associated with the specified schema. The table formats supported are delimited, orc and parquet as

defined in section 12.10.12.10.2.

12.10.12.10.4.1. Syntax

The table below shows the possible key-value pairs that can be specified using the WITH clause:

CREATE TABLE <tableReference>

(

<columnDefinition>, ...

)

[PARTITION [BY] (<expr>, ...)]

[WITH <key>='<value>' [,<key>='<value>'] [,<further key values>]]

where:

<tableReference> is:

[catalog.][schema.]<table name>

<column definition> is:

<columnName> <type> [[NOT] NULL]

<type> is:

INTEGER [(precision)] |

DECIMAL [(scale[, precision])] |

FLOAT |

VARCHAR [(size)] |

BOOLEAN |

TIMESTAMP |

DATE

<column name> is: <SQL identifier>

<key>:

See table below for list of possible keys

<value>:

See table below for list of possible values

RapidsDB Release 4.3.3 User Guide Page 258 © Borrui Data Technology Co. Ltd 2022

Key: Default Value Value syntax Description

format 'delimited' |
'parquet' |
'orc'

Specifies the format of the file,
which can either be 'delimited'
'orc' or 'parquet'.

If the format is not specified as
part of the Connector definition
then this must be specified

path If this option is
not set, then
the table will
be created as
a Hive-
managed table
where Hive
will define the
path.

Non-empty, non-
whitespace string.

Specifies the full path name to
the HDFS file(s) associated with
this table.

If this option is set, then this will
result in the table being created
as an EXTERNAL table in the Hive
Metastore.

delimiter ',' '<char>'
Non-empty, single
character string

Specifies the field delimiter.

Applies to delimited format only.

See 12.10.12.5.7 for more details

escape_char '\' '<char>'
Non-empty, single
character string

Specifies the character to be
used as an escape character.
This will allow the user to
include embedded field and
record terminator characters in
the data field as well embedded
quotes in the event that the field
is a string field that is enclosed
within quote characters.

Applies to delimited format only.

See 12.10.12.5.9 for more details

12.10.12.10.4.2. Creating Hive-managed Tables

If the “path” key is not specified for the table then the table will be created in the Hive Metastore as a

Hive-managed table, which means that Hive will assign the path for the files for the table, and a DROP

TABLE request (see 12.10.12.10.5.1) will result in both the metadata and the data getting deleted.

Example:

rapids > CREATE CONNECTOR TEST_WRITE TYPE HADOOP WITH

PARTITIONS_PER_NODE='8', METASTORE='192.168.10.14:9083', USER='rapids'

NODE RDP1 CATALOG * SCHEMA TEST_WRITE TABLE *;

RapidsDB Release 4.3.3 User Guide Page 259 © Borrui Data Technology Co. Ltd 2022

0 row(s) returned (0.19 sec)

rapids > create table test_write.t_test(c1 integer, c2 timestamp) with

format='delimited', delimiter=',';

0 row(s) returned (1.53 sec)

rapids > describe table test_write.t_test;

TABLE_NAME COLUMN_NAME

IS_NULLABLE PRECISION

DATA_TYPE

SCALE

ORDINAL IS_PARTITION_KEY

t_test

true

t_test

c1

64

c2

NULL

INTEGER

TIMESTAMP

0

1

false

false

true NULL NULL

2 row(s)

returned

(0.22 sec)

The above example created the table t_test in the Hive database test_write with the following

attributes:

• ROW FORMAT delimited

• STORED AS textfile

• FIELD TERMINATOR ','

12.10.12.10.4.3. Creating Hive EXTERNAL Tables

The user can also create tables that are registered in the Hive Metastore as EXTERNAL tables by

specifying the path to be used for the files associated with the table using the “path” key in the WITH

clause (see 12.10.12.10.4.1). For tables created as external tables, the DROP table command (see

12.10.12.10.5.2) will behave the same as DROP TABLE in Hive and it will only result in the metadata for

the table getting dropped not the data.

Example:

rapids > CREATE CONNECTOR TEST_PAR TYPE HADOOP WITH USER='rapids',

PARTITIONS_PER_NODE='8', METASTORE='192.168.10.14:9083' NODE * CATALOG

* SCHEMA TEST_PAR TABLE *;

0 row(s) returned (0.16 sec)

rapids > create table test_par.external_t1(c1 integer, c2 varchar)

with format='delimited',

path='/user/rapids/dave/writetests/external_t1';

0 row(s) returned (2.21 sec)

rapids > describe table test_par.external_t1;

TABLE_NAME

IS_NULLABLE

COLUMN_NAME DATA_TYPE ORDINAL IS_PARTITION_KEY

PRECISION SCALE

RapidsDB Release 4.3.3 User Guide Page 260 © Borrui Data Technology Co. Ltd 2022

external_t1 c1 INTEGER 0 false

true 64 NULL

external_t1 c2 VARCHAR 1 false

true 255 NULL

2 row(s) returned (0.19 sec)

The above example created the table external_t1 in the Hive database test_par. Below is the detailed

information from Hive for this table:

12.10.12.10.5 DROP TABLE

Syntax:

The Hadoop Connector supports DROP TABLE for any table currently being accessed from the Hive

Metastore.

12.10.12.10.5.1. Dropping Hive-managed Tables

For Hive-managed tables (see 12.10.12.10.4.2) the table and all associated data will be dropped along

with the table metadata from both the RapidsDB Metastore as well as the Hive Metastore.

Example:

| Detailed Table Information | Table(tableName:external_t1, dbName:test_par, owner:rapids,

createTime:1571778049, lastAccessTime:0, retention:0,

sd:StorageDescriptor(cols:[FieldSchema(name:c1, type:bigint, comment:null), FieldSchema(name:c2,

type:varchar(255), comment:null)],

location:hdfs://192.168.10.15:8020/user/rapids/dave/writetests/external_t1,

inputFormat:org.apache.hadoop.mapred.TextInputFormat,

outputFormat:org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat, compressed:false,

numBuckets:0, serdeInfo:SerDeInfo(name:null,

serializationLib:org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe,

parameters:{serialization.format=,, field.delim=,}), bucketCols:[], sortCols:[], parameters:{},

skewedInfo:SkewedInfo(skewedColNames:[], skewedColValues:[], skewedColValueLocationMaps:{}),

storedAsSubDirectories:false), partitionKeys:[], parameters:{transient_lastDdlTime=1571778049,

totalSize=6, EXTERNAL=TRUE, numFiles=1}, viewOriginalText:null, viewExpandedText:null,

tableType:EXTERNAL_TABLE, rewriteEnabled:false) | |

DROP TABLE [<catalog>.][<schema>.]<table>;

rapids > CREATE CONNECTOR TEST_WRITE TYPE HADOOP WITH PARTITIONS_PER_NODE='8',

METASTORE='192.168.10.14:9083', USER='rapids' NODE * CATALOG * SCHEMA TEST_WRITE TABLE * ;

0 row(s) returned (0.32 sec)

rapids > create table test_write.t_test (c1 integer, c2 varchar) with format='delimited';

0 row(s) returned (1.59 sec)

RapidsDB Release 4.3.3 User Guide Page 261 © Borrui Data Technology Co. Ltd 2022

In the example above, the table t_test was created in the Hive database test_write as a Hive-managed

table. Below is the data in HDFS for this table:

The following DROP TABLE request will remove the table metadata as well as the data for this table:

From HDFS the data file is no longer present:

12.10.12.10.5.2. Dropping External Tables

For External tables (see 12.10.12.10.4.3) only the metadata associated with the table will get dropped,

not the data associated with the table.

Example:

rapids > insert into test_write.t_test values(1,'abc');

0 row(s) returned (1.05 sec)

rapids@db01:/opt/rdp/current$ hdfs dfs -ls /user/rapids/warehouse/test_write.db/t_test

Found 1 items

-rw-r--r-- 3 rapids supergroup 6 2019-10-23 07:20

/user/rapids/warehouse/test_write.db/t_test/7_0

rapids > drop table test_write.t_test;

0 row(s) returned (1.66 sec)

rapids > describe table test_write.t_test;

Table not found, or Catalog/Schema has been set for others.

0 row(s) returned (0.33 sec)

rapids@db01:/opt/rdp/current$ hdfs dfs -ls /user/rapids/warehouse/test_write.db/t_test

ls: `/user/rapids/warehouse/test_write.db/t_test': No such file or directory

rapids > CREATE CONNECTOR TEST_PAR TYPE HADOOP WITH USER='rapids',

PARTITIONS_PER_NODE='8', METASTORE='192.168.10.14:9083' NODE * CATALOG * SCHEMA TEST_PAR

TABLE *;

0 row(s) returned (0.19 sec)

rapids > create table test_par.external_t1 (c1 integer, c2 varchar) with format='delimited',

path='/user/rapids/dave/writetests/external_t1';

0 row(s) returned (2.14 sec)

rapids > select * from external_t1;

c1 c2

-- --

1 abc

1 row(s) returned (0.21 sec)

RapidsDB Release 4.3.3 User Guide Page 262 © Borrui Data Technology Co. Ltd 2022

The above would create the table external_t1 in the Hive database test_par and register the table as an

external table. The sequence below shows dropping the table, and the recreating the same table with

the data still present from before:

12.10.12.11 Writing to HDFS

12.10.12.11.1 INSERT

When writing data as the result of an INSERT request, the Hadoop Connector will write the data to files

in the directory specified by the PATH option or to the directory as specified by the Hive Metastore for

that table using the following naming convention:

<partition>_<file index>

Where,

• <partition> is the number of the partition writer

• <file index> is the ……

The Hadoop Connector supports writing the results of an INSERT or INSERT … SELECT statement to

HDFS. The format of the data written to HDFS is controlled by the FORMAT option associated with a

table as described below.

12.10.12.11.1.1 FORMAT='DELIMITED'

The format of the data written to HDFS will follow the delimited file options specified for the Connector

(see 7.10.12.5). For example, if ENCLOSED_BY="'", then all character fields written out to HDFS will be

enclosed in single quotes. See below for examples.

rapids > drop table external_t1;

0 row(s) returned (1.96 sec)

rapids > set trace off;

rapids > select * from external_t1;

com.rapidsdata.parser.exceptions.UsageException: Line 1 position 15: Unresolved table or stream

name: EXTERNAL_T1.. locus=RDP1.

rapids > create table test_par.external_t1 (c1 integer, c2 varchar) with format='delimited',

path='/user/rapids/dave/writetests/external_t1';

0 row(s) returned (2.14 sec)

rapids > select * from external_t1;

c1 c2

-- --

1 abc

1 row(s) returned (0.21 sec)

RapidsDB Release 4.3.3 User Guide Page 263 © Borrui Data Technology Co. Ltd 2022

When writing to HDFS the data will either be appended to an existing file or will be written to new

directories/files created by the Hadoop Connector depending on the definition in the Connector for the

target table as described in the following sections.

Examples:

In the following example, the ENCLOSED_BY is not set:

INSERT Statement Data record written to HDFS

INSERT INTO t1 values('abcdef',1,'2018-04-30 09:00:00'); abcdef,1,2018-04-30 09:00:00.0

INSERT INTO t1 values('Dave''s house',2, '2018-04-30
09:00:00.123');

Dave's house,2,2018-04-30 09:00:00.123

INSERT INTO t1 values('abc,def',3, '2018-04-30
09:00:00.12345678');

abc\,def,3,2018-04-30 09:00:00.1234561

INSERT INTO t1 values(null,4,null); null,4,null

Note:

1. The fractional scale is truncated to 6 digits

In the following example the ENCLOSED_BY is set:

INSERT Statement Data record written to HDFS

INSERT INTO t1 values('abcdef',1,'2018-04-30 09:00:00'); 'abcdef',1,'2018-04-30 09:00:00.0'

INSERT INTO t1 values('Dave''s house',2, '2018-04-30
09:00:00.123');

'Dave\'s house',2,'2018-04-30
09:00:00.123'

INSERT INTO t1 values('abc, def',3, '2018-04-30
09:00:00.12345678');

'abc,def',3,'2018-04-30 09:00:00.1234561'

INSERT INTO t1 values(null,4,null); null,4,null

Note:

1. The fractional scale is truncated to 6 digits

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited', delimiter=','

CATALOG *

SCHEMA *

TABLE t1 USING (c1 varchar, c2 integer, c3 timestamp) WITH path='/data/sample/test/t1';

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited', delimiter=',', enclosed_by= "'"

CATALOG *

SCHEMA *

TABLE t1 USING (c1 varchar, c2 integer, c3 timestamp) WITH path='/data/sample/test/t1';

RapidsDB Release 4.3.3 User Guide Page 264 © Borrui Data Technology Co. Ltd 2022

In the following example the ENCLOSED_BY and DATE_FORMAT are set:

INSERT Statement Data record written to HDFS

INSERT INTO t1 values('abcdef',1,'2018-04-30 09:00:00'); 'abcdef',1,'2018.04.30 09:00:00.0'

INSERT INTO t1 values('Dave''s house',2, '2018-04-30
09:00:00.123');

'Dave\'s house',2,'2018.04.30
09:00:00.123'

INSERT INTO t1 values('abc, def',3, '2018-04-30
09:00:00.12345678');

'abc,def',3,'2018.04.30 09:00:00.1234561'

INSERT INTO t1 values(null,4,null); null,4,null

Note:

1. The fractional scale is truncated to 6 digits

12.10.12.11.1.2 FORMAT='ORC'

The data will be written using the ORC format, where the format for the data types will follow the Hive

format as shown in the table below:

Rapids Data Type Hive Data Type

INTEGER BIGINT

DECIMAL DECIMAL

BOOLEAN BOOLEAN

DATE DATE

TIMESTAMP TIMESTAMP

FLOAT(24) FLOAT

FLOAT(53) DOUBLE

VARCHAR STRING

12.10.12.11.1.3 FORMAT='PARQUET'

The data will be written using the Parquet format, where the format for the data types will follow the

Hive format as shown in the table below:

Rapids Data Type Hive Data Type

INTEGER BIGINT

DECIMAL DECIMAL

BOOLEAN BOOLEAN

DATE DATE
TIMESTAMP TIMESTAMP

CREATE CONNECTOR HDFS1 TYPE HADOOP

WITH hdfs='hdfs://192.168.10.15:8020', format='delimited', delimiter=',', enclosed_by="'",

DATE_FORMAT='YYYY.MM.DD'

CATALOG *

SCHEMA *

TABLE t1 USING (c1 varchar, c2 integer, c3 timestamp) WITH path='/data/sample/test/t1';;

RapidsDB Release 4.3.3 User Guide Page 265 © Borrui Data Technology Co. Ltd 2022

FLOAT(24) FLOAT

FLOAT(53) DOUBLE

VARCHAR STRING

12.10.12.11.2 TRUNCATE TABLE

When doing a TRUNCATE TABLE the Hadoop Connector will delete all of the files from the directory

associated with that table, along with any files in sub-directories under the parent directory (for Hive-

style partitioning). The metadata information associated with the table will not be deleted.

Example 1:

Example 2:

rapids > CREATE CONNECTOR HDFS1 TYPE HADOOP WITH hdfs='hdfs://192.168.10.15:8020',

format='delimited', USER='rapids' CATALOG * SCHEMA *

> TABLE TEST1 USING (c1 integer, c2 varchar) WITH path='/user/rapids/dave/writetests/test1';

0 row(s) returned (0.14 sec)

rapids > insert into hdfs1.public.test1 values(1, 'abc');

0 row(s) returned (0.70 sec)

rapids > select * from hdfs1.public.test1;

C1 C2

-- --

1 abc

1 row(s) returned (0.11 sec)

rapids > truncate hdfs1.public.test1;

0 row(s) returned (0.13 sec)

rapids > select * from hdfs1.public.test1;

0 row(s) returned (0.06 sec)

rapids > CREATE CONNECTOR TEST_PAR TYPE HADOOP WITH USER='rapids',

PARTITIONS_PER_NODE='8', METASTORE='192.168.10.14:9083' NODE * CATALOG * SCHEMA TEST_PAR

TABLE *;

0 row(s) returned (0.16 sec)

rapids > select * from test_par.test1;

c1 c2

-- --

1 abc

1 row(s) returned (0.15 sec)

RapidsDB Release 4.3.3 User Guide Page 266 © Borrui Data Technology Co. Ltd 2022

12.10.13 Adding an IMPEX Connector

12.10.13.1 Creating an IMPEX Connector

The user can create import and export Connectors using the IMPEX Connector type. To create an IMPEX

Connector use the following command

where <key> is one of the supported IMPEX Connector properties as defined in the next section.

Example:

Would create an IMPEX Connector named “CSV” that can run on any node in the RapidsDB cluster and
where the delimiter character is '|', and the base path is the root directory ('/'). All other IMPEX
properties would use default values as described below.

This would create the same Connector as the previous example with the one difference being that this
Connector could only operate on the RapidsDB Cluster node “RDP1”. This restricts the Connector to only
the specified node when reading or writing data using a “node://“ URL.

12.10.13.2 IMPEX Connector Properties

The IMPEX Connector type supports the following properties which can be set either when creating the

Connector using the CREATE CONNECTOR command (see examples below) or as part of an import

reference or export reference (refer to the RapidsDB User Guide for more information on import and

export references and creating IMPEX Connectors)

Key: Default Syntax Description

FORMAT 'CSV' 'CSV' | 'RAW' Specifies the file format:
• CSV: A delimited file
• RAW: will produce a table with

a single VARCHAR column
containing the full text of each
record in the imported file.

rapids > truncate test_par.test1;

0 row(s) returned (0.28 sec)

rapids > select * from test_par.test1;

0 row(s) returned (0.12 sec)

CREATE CONNECTOR CSV TYPE IMPEX WITH DELIMITER='|', PATH='/';

CREATE CONNECTOR <name> TYPE IMPEX [WITH <key>='<value>' [,<key>='<value>']]

[NODE * | NODE <node name> [NODE <node name>] [<further node names>]];

CREATE CONNECTOR CSV TYPE IMPEX WITH DELIMITER='|', PATH='/' NODE RDP1;

RapidsDB Release 4.3.3 User Guide Page 267 © Borrui Data Technology Co. Ltd 2022

PATH '/var/tmp/rapids' '<fully qualified path>' Specifies the fully qualified path
name to use as the base path name
for all import references or export
references.

ERROR_PATH '/var/tmp/rapids_
errors'

'<fully qualified path>' Specifies the fully qualified path
name to use as the base path for
the error files generated if an
import operation fails.

ERROR_LIMIT 10 Integer, -1 | 0 | >0 Specifies the maximum number of
allowable errors on an import
operation. Once the limit is
reached the import will be
terminated. The possible values
are:
-1 no limit
0 terminate on first error
>0 terminate after specified
number of errors

BACKUP false [] | true | false For EXPORT only.

For bulk export operations, when
the REPLACE option is specified, if
BACKUP is “false”, then any existing
files with a suffix of “.csv” in the
specified folder or sub-folders prior
to the export operation will get
deleted and then new files created
for the export.

For bulk export operations, when
the REPLACE option is specified, if
BACKUP is “true”, then any existing
files with a suffix of “.csv” in the
specified folders or sub-folders prior
to the export operation will be
moved to a backup folder so that
they can be recovered if needed
and then new files created for the
export.

Note: if “true” or “false” are
omitted and just the keyword
“BACKUP” is specified, that is
equivalent to “true”.

CHARSET ‘UTF-8’ ‘<string>’
as defined by the Java
charset class

Specifies the character set to be
used. Some examples:
‘GBK’
‘GB2312’

RapidsDB Release 4.3.3 User Guide Page 268 © Borrui Data Technology Co. Ltd 2022

 https://docs.oracle.com
/javase/8/docs/api/java
/nio/charset/Charset.ht
ml

‘GB18030’
‘Big5’

DELIMITER ‘,’ ‘<char>’
Non-empty, single
character string

Specifies the field delimiter
character. This can only be a single
character.

ENCLOSED_BY ‘”’
double quote

‘<char>’
Non-empty, single
character string

Specifies whether a field is
optionally enclosed by a specified
character. This is commonly used
to specify that string fields are
optionally enclosed by either a
single quote or double quote
character and that character should
not be included as part of the field
data. If the same character is also
included as part of the field data,
then it must be escaped (see
ESCAPE_CHAR below for more
details).

ESCAPE_CHAR ‘\’ ‘<char>’
Non-empty, single
character string

Specifies the character to be used
as an escape character. This will
allow the user to include embedded
field delimiters and enclosed_by
characters in the data .

FILTER ‘*.*’ ‘<string>’
Non-empty, character
string using a REGEX
format

For IMPORT only.

The FILTER property allows the user
to control which files are imported
in a wildcard import operation and,
optionally, how table names are
created from the names of
imported files. The FILTER value is a
character string containing a Java
regular expression (a “regex”).

When performing a wildcard
import, IMPEX examines each
filename available from the import
source. Only files whose names
satisfy the FILTER regex are
imported. (For a tutorial on Java
regular expressions, see
https://www.oracle.com/technical-
resources/articles/java/regex.html)

https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html
https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html
https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html
https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html
http://www.oracle.com/technical-

RapidsDB Release 4.3.3 User Guide Page 269 © Borrui Data Technology Co. Ltd 2022

 A "capturing group" can be used in
the regex to control how IMPEX
creates a table name from the
name of an imported file. The
characters matched by the first
group in the regex are used as the
table name. If the regex contains no
groups, then the table name will
match the first part of the file name
(before any dot suffixes).

Note: for convenience, a FILTER
value that starts with an asterisk is
interpreted as a simple filename
filter. For example FILTER='*.csv'
will import all files with a “.csv”
extension.

GUESS false [] | true | false For IMPORT only

When “false” specifies that the
Connector should treat all columns
as polymorphic strings, which will
be automatically cast into the
appropriate data types depending
on the query.

When “true” specifies that the
Connector should derive the
column data types for any columns
whose data type has not been
specified. The data types are
derived by sampling the data being
imported and then determining
what the appropriate data type
would be for each input field in the
sampled data. For example, if the
sampled data contained 100
records, and a given field contains
alphanumeric characters for all 100
records, then it would be mapped
to a VARCHAR column, if the field
contained just integer characters
then it would be mapped to an
INTEGER, and so on.

Note: if “true” or “false” are
omitted and just the keyword

RapidsDB Release 4.3.3 User Guide Page 270 © Borrui Data Technology Co. Ltd 2022

 “GUESS” is specified, that is
equivalent to “true”.

HEADER false [] | true | false When “true” specifies that the data
file has a header record which has
the column names to use on an
import, or has the column names
from the result set for an export.

When “false” specifies that there is
no header record.

Note: if “true” or “false” are
omitted and just the keyword
“HEADER” is specified, that is
equivalent to “true”.

TERMINATOR '\n' '\n' Specifies how records are
terminated. For this release the
TERMINATOR is fixed as '\n', with
an optional '\r'

TRAILING false [] | true | false When “true” IMPEX will ignore a
trailing field separator (i.e. where
the field separator is immediately
followed by the record terminator
character) on each line of a file
being imported and will append a
trailing separator to each line of a
file being exported.

When “false” a trailing field
separator will indicate a null value
for the last column of the record
being imported. For export no
trailing field separator will be
written out.

Note: if “true” or “false” are
omitted and just the keyword
“TRAILING” is specified, that is
equivalent to “true”.

Examples:

Would create an IMPEX Connector named “CSV” where the delimiter character is '|'. The “PATH”
property was not set and so would default to “/var/tmp/rapids”.

CREATE CONNECTOR CSV TYPE IMPEX WITH DELIMITER='|';

RapidsDB Release 4.3.3 User Guide Page 271 © Borrui Data Technology Co. Ltd 2022

Would create an IMPEX Connector named “CSV” where the delimiter character is '|' and the “PATH”
property is set to the root directory (“/”).

12.11 Refreshing Connector Metadata Information

12.11.1 REFRESH Command

Syntax: refresh [connector <connector name>];

The RapidsDB REFRESH command will cause all of the active Connectors, or just the specified Connector,

in the RapidsDB Cluster to update their schema metadata information based on the Connector

definitions. This command would be used when the schema metadata on any of the data sources has

been changed outside of RapidsDB.

For example, if the following Oracle Connector was active, then the following command would result in

the ORA1 Connector getting the latest schema metadata information for the “hr” schema:

Example:

If there were multiple Connectors to be updated then the following command will update the metadata

for all of the active Connectors:

12.12 Altering Connectors

There is no ALTER CONNECTOR command, to alter the definition for a Connector the user must drop the

Connector and then recreate the Connector with the changed definition. To aid in recreating the

Connector you can get the text of the CREATE CONNECTOR command that was used to create the

Connector by querying the RapidsDB System Metadata table rapids.system.connectors (refer to the User

Guide for more information on system metadata tables). NOTE: this query must be executed before

dropping the Connector.

CREATE CONNECTOR CSV TYPE IMPEX WITH DELIMITER='|', PATH='/';

CREATE CONNECTOR ORA1 TYPE ORACLE WITH HOST= '10.1.1.20', USER='rapids', PASSWORD='rdpuser'

NODE RDP1 CATALOG * SCHEMA hr TABLE *;

rapids > refresh connector ora1;

0 row(s) returned (0.18 sec)

rapids > refresh;

0 row(s) returned (1.37 sec)

RapidsDB Release 4.3.3 User Guide Page 272 © Borrui Data Technology Co. Ltd 2022

12.13 Dropping Connectors

To drop an existing Connector use the following command from the rapids-shell:

DROP CONNECTOR <name>;

Any queries that were in flight at the time that the Connector was dropped and which reference the

Connector will run to completion, but any new queries that reference tables managed by that Connector

will fail.

Example:

12.14 Disabling and Enabling Connectors

12.14.1 DISABLE Connector

In the event that there is a temporary problem with a Connector, for example, the associated data

source is not available, then the Connector can be disabled and that Connector will no longer participate

in any requests. The format for the command is:

The CONNECTORS table in the RapidsDB System Metadata tables (refer to the User Guide for more

information on system metadata tables) includes the column “IS_ENABLED” which indicates whether

the Connector is enabled or disabled.

Example – the following example queries the CONNECTORS table for a Connector named “ORA1”, which

indicates that it is enabled, and then the “ORA1” Connector is disabled and the query to the

CONNECTORS table now shows that the Connector is disabled:

DISABLE CONNECTOR <Connector Name>;

rapids > select IS_ENABLED from connectors where connector_name='ORA1';

IS_ENABLED

true

1 row(s) returned

rapids > disable connector ORA1;

0 row(s) returned

rapids > select IS_ENABLED from connectors where connector_name='ORA1';

IS_ENABLED

RapidsDB Release 4.3.3 User Guide Page 273 © Borrui Data Technology Co. Ltd 2022

12.14.2 ENABLE Connector

If a Connector has been disabled (see 12.14.1), it can be enabled again using the ENABLE CONNECTOR

command:

ENABLE CONNECTOR <Connector name>;

The CONNECTORS table in the RapidsDB System Metadata tables (refer to the User Guide for more

information on system metadata tables) includes the column “IS_ENABLED” which indicates whether

the Connector is enabled or disabled.

Example – the following example queries the CONNECTORS table for the “ORA1” Connector, which

indicates that it is disabled, and then the “ORA1” Connector is enabled and the query to the

CONNECTORS table now shows that the Connector is enabled:

13 Managing MOXE
In order to take advantage of using MOXE to manage in-memory tables, the user must first create a

MOXE Connector as described in section 12.10.5. Having created a MOXE Connector the following

sections describe how to create, drop, backup and restore MOXE tables.

false

1 row(s) returned

rapids > disable connector se;

0 row(s) returned

rapids > select IS_ENABLED from connectors where connector_name='ORA1';

IS_ENABLED

false

1 row(s) returned

rapids > enable connector ORA1;

0 row(s) returned

rapids > select IS_ENABLED from connectors where connector_name='ORA1';

IS_ENABLED

true

1 row(s) returned

RapidsDB Release 4.3.3 User Guide Page 274 © Borrui Data Technology Co. Ltd 2022

13.1 CREATE TABLE

The user can create MOXE tables from the rapids-shell or from JDBC using the CREATE TABLE command:

13.1.1 PARTITION [BY]

The partition (by) clause allows the user to specify which column(s) will be used for partitioning the

table. The specified columns will be hashed to form a key that will be used to distribute the data across

the MOXE partitions in the RapidsDB cluster. If the PARTITION clause is omitted the table will be

created as a reference(replicated) table, in which case the table will be replicated to each node where

MOXE is running in the RapidsDB cluster and any inserts will result in each copy of the table being

updated with the new rows (refer to 13.1.2 for more information on reference tables).

Example:

The following example creates a distributed table with the column s_suppkey as the partitioning

column:

CREATE [REFERENCE] TABLE [IF NOT EXISTS] <tableReference>

(

<columnDefinition>, ...

)

[PARTITION [BY] (<expr>, ...)] [COMMENT <string>]

where:

<tableReference> is:

[<connector name>.]MOXE. tableName

<column definition> is:

<columnName> <type> [[NOT] NULL] [COMMENT <string>]

<type> is:

INTEGER [(precision)] |

DECIMAL [(scale[, precision])] |

FLOAT |

VARCHAR [(size)] |

BOOELAN |

DATE |

TIMESTAMP

rapids > create table moxe.SUPPLIER (

> s_suppkey integer NOT NULL comment 'Supplier key',

> s_name varchar(25),

> s_address varchar(40),

RapidsDB Release 4.3.3 User Guide Page 275 © Borrui Data Technology Co. Ltd 2022

This table also has a comment on the column s_suppkey and a table level comment. The comments can

be seen by querying the RapidsDB COMMENTS and TABLES tables as shown below:

> s_nationkey integer,

> s_phone varchar(15),

> s_acctbal decimal(17,2),

> s_comment varchar(101)

>) PARTITION (s_suppkey) comment 'Supplier table';

0 row(s) returned (0.15 sec)

rapids > select * from tables where table_name='SUPPLIER';

CATALOG_NAME

PROPERTIES

SCHEMA_NAME TABLE_NAME IS_PARTITIONED COMMENT

MOXE

table

MOXE SUPPLIER true Supplier

NULL

1 row(s) returned (0.07 sec)

rapids > select * from columns where table_name='SUPPLIER';

CATALOG_NAME SCHEMA_NAME

ORDINAL IS_PARTITION_KEY

TABLE_NAME COLUMN_NAME DATA_TYPE

IS_NULLABLE PRECISION PRECISION_RADIX

SCALE CHARACTER_SET COLLATION COMMENT PROPERTIES

MOXE

0

NULL NULL

MOXE

1

NULL UTF16

MOXE

2

NULL UTF16

MOXE

3

NULL NULL

MOXE

4

NULL UTF16

MOXE

5

2 NULL

MOXE

true

SUPPLIER

false

S_SUPPKEY

64

INTEGER

2

NULL Supplier key NULL

MOXE

false

MOXE

false

SUPPLIER

true

NULL

SUPPLIER

true

NULL

SUPPLIER

true

NULL

SUPPLIER

true

NULL

SUPPLIER

true

NULL

S_NAME

NULL

VARCHAR

NULL

BINARY NULL

S_ADDRESS

NULL

NULL

S_NATIONKEY

64

NULL

S_PHONE

NULL

NULL

S_ACCTBAL

17

NULL

VARCHAR

NULL

BINARY

MOXE

false

INTEGER

2

NULL

MOXE

false

VARCHAR

NULL

BINARY

MOXE

false

NULL

DECIMAL

10

RapidsDB Release 4.3.3 User Guide Page 276 © Borrui Data Technology Co. Ltd 2022

MOXE MOXE SUPPLIER S_COMMENT VARCHAR

6 false true NULL NULL

NULL UTF16 BINARY NULL NULL

7 row(s) returned (0.08 sec)

13.1.2 Reference(replicated) Tables

Reference tables are tables that are replicated to each node in the RapidsDB cluster. Reference tables

are typically used for small dimension tables which can result in improved query performance when

doing JOINs because the JOINs to the reference tables can be completed locally on each node in the

RapidsDB cluster avoiding any network overhead. Refer to section 13.2 for details on how to create a

reference table.

The following example creates a replicated table that will be replicated to every RapidsDB node in the

cluster:

13.1.3 Data Types

13.1.3.1 INTEGER

By default the precision is 64 bits.

13.1.3.2 DECIMAL

By default the scale is 17 and precision is zero. The maximum precision is 17.

13.1.3.3 FLOAT

MOXE uses 64-bit double precision for floats.

13.1.3.4 VARCHAR

MOXE treats all CHAR and VARCHAR values as variable-length strings with a maximum of 32766

characters.

13.1.3.5 TIMESTAMP

The maximum precision for the fractional component of a timestamp is 6 digits, for example:

2018-01-01 09:00:00.123456

rapids > create reference table MOXE.REGION (

> r_regionkey integer not null,

> r_name varchar(25) not null,

> r_comment varchar(152)

>);

0 row(s) returned (0.27 sec)

RapidsDB Release 4.3.3 User Guide Page 277 © Borrui Data Technology Co. Ltd 2022

13.1.3.6 DATE

The format for a date is YYYY-MM-DD.

13.2 CREATE TABLE AS SELECT

Allows the user to create a table automatically from the results of a query and then insert the query

results into the table. This command can be used from the rapids-shell or from JDBC.

CREATE TABLE AS SELECT is a simple way to create a copy of an existing table or to create a materialized

copy of a result set. It is similar to the INSERT…SELECT statements except that the INSERT…SELECT

statement appends rows to a table that already exists. As such, CTAS is a quick and easy way to take a

copy of a result set and save it in a separate table.

Syntax:

Examples:

In the following the MOXE Connector name is “moxe”.

Creates a table t with columns and data from table db.test.t.

statement := CREATE TABLE [IF NOT EXISTS] <tableName>

[(<tableDefinition>)]

[<partitionInformation>]1

[<tableProperties>] 2

[AS] <subquery> [WITH [NO] DATA];

tableDefinition := <objectDefinition> [, <objectDefinition> [, ...]]

objectDefinition:= <columnDefinition>

columnDefinition := <columnName> [<columnType> [<columnConstraint>]]

columnConstraint := NOT NULL

subquery := <selectOrValuesQuery> | (<selectOrValuesQuery>)

selectOrValuesQuery:= <selectQuery> | <valuesQuery>

selectQuery := SELECT <selectQueryExpression>

valuesQuery := VALUES (<expression> [, <expression [, ...]]) [, (...)]

CREATE TABLE moxe.t SELECT * FROM db.test.t;

CREATE TABLE moxe.t AS SELECT * FROM u;

RapidsDB Release 4.3.3 User Guide Page 278 © Borrui Data Technology Co. Ltd 2022

Creates a table t with columns and data from u, using the optional AS clause.

Creates a table t with columns a, b, and c from table db.test.t.

Creates a table t with automatically named columns (“col1”, “col2”, “col3”) and one row of data from

the VALUES clause. The data types of the columns are determined by how the literals are expressed in

the VALUES clause, and in this example will be:

• Integer

• Varchar

• Boolean

Refer to the RapidsDB User Guide for a more complete description of the CREATE TABLE AS SELECT

command.

13.3 DROP TABLE

The syntax for the DROP TABLE command is:

NOTES:

1. The catalog and schema names are only needed when the <table name> is not unique. For

MOXE the catalog and schema names are the Connector name.

Examples:

In the last example the MOXE Connector name is “moxe_conn”.

13.4 TRUNCATE TABLE

The user can remove all of the data from a MOXE table using the TRUNCATE TABLE command:

CREATE TABLE moxe.t AS SELECT a, b, c FROM db.test.t;

CREATE TABLE moxe.t AS VALUES (1, 'abc', true);

DROP TABLE [IF EXISTS] [[<catalog>.]<schema>.]<table name>;

DROP TABLE.supplier;

DROP TABLE moxe_conn.supplier;

TRUNCATE TABLE [[<catalog>.]<schema>.]<table name>;

RapidsDB Release 4.3.3 User Guide Page 279 © Borrui Data Technology Co. Ltd 2022

NOTES:

1. The catalog and schema names are only needed when the <table name> is not unique. For

MOXE the catalog and schema names are the Connector name.

Example:

13.5 Backing up and Restoring MOXE Tables

MOXE provides support for backing up either the entire database or individual tables using the UNLOAD

command (see 13.5.1 below), which can subsequently be restored using the RELOAD command (see

13.5.2). These commands allow the user to persist the in-memory data and then shut down the

RapidsDB Cluster and restart the RapidsDB Cluster and reload the MOXE data from the backups, so that

the system is recovered to the point at which the last backups were taken.

13.5.1 UNLOAD

13.5.1.1 UNLOAD Command

Syntax:

rapids > create table moxe.t1(c1 varchar, c2 integer, c3 timestamp);

0 row(s) returned (0.25 sec)

rapids > INSERT INTO moxe.t1 values('abcdef',1, '2018-04-30 09:00:00');

0 row(s) returned (0.16 sec)

rapids > select * from moxe.t1;

C1 C2 C3

-- -- --

abcdef 1 2018-04-30 09:00:00.0

1 row(s) returned (0.47 sec)

rapids > truncate table moxe.t1;

0 row(s) returned (0.18 sec)

rapids > select * from moxe.t1;

0 row(s) returned (0.14 sec)

rapids >

If nodes are added or removed from the RapidsDB Cluster, then any MOXE “unload” files (see

13.5.1) that were created to backup the data in MOXE tables will no longer be loadable. Important data

saved in “unload” files should be persisted (e.g. using the EXPORT statement or an alternate Connector)

so it can be recreated after the cluster is reconfigured.

ESCAPE CONNECTOR <MOXE connector name> UNLOAD WITH name='<id>' ,path='<path>'

[,FILTER='<regex>'];

RapidsDB Release 4.3.3 User Guide Page 280 © Borrui Data Technology Co. Ltd 2022

rapids > show tables;

CATALOG_NAME SCHEMA_NAME TABLE_NAME

MOXE MOXE CUSTOMER

MOXE MOXE SUPPLIER

8 row(s) returned (0.08 sec)

rapids > escape connector moxe unload with filter='(?i).*\.MOXE\.part.*', name='parts_2019_10_31',

path='/home/rapids/dave/moxe';

0 row(s) returned (0.58 sec)

Where,

<id> is the user-assigned name to identify this backup

<path> is the fully qualified Linux path name to the parent directory where the backup files will be

written. Each backup will be uniquely identified using the <id> specified in the command, so typically

there would only need to be one parent backup directory created for all backups.

<regex> can be any Java regular expression (see

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html), and it will be used to match

for fully qualified table MOXE table names, or it can be a fully qualified MOXE table name . If this option

is omitted the entire database will be backed up.

Example 1: backup up table named supplier using a fully qualified name:

Example 2: backup entire MOXE database:

Example 3: backup using a regex, which would do a case-insensitive match for any table being with

“part”, which in this example would be PART and PARTSUPP

MOXE MOXE LINEITEM

MOXE MOXE NATION

MOXE MOXE ORDERS

MOXE MOXE PART

MOXE MOXE PARTSUPP

MOXE MOXE REGION

Here are the backup files on RapidsDB node RDP1:

rapids > escape connector moxe unload with filter='MOXE.MOXE.SUPPLIER',

name='supplier_2019_10_31', path='/home/rapids/dave/moxe';

0 row(s) returned (1.24 sec)

rapids > escape connector moxe unload with name='db_2019_10_31', path='/home/rapids/dave/moxe';

0 row(s) returned (0.33 sec)

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

RapidsDB Release 4.3.3 User Guide Page 281 © Borrui Data Technology Co. Ltd 2022

13.5.1.2 UNLOAD Directory Structure

The parent directory is the directory specified by the path option in the UNLOAD command. Using the

examples above, the parent directory is home/rapids/dave/moxe. A directory named “moxe.<node

name>” will be created on each node in the RapidsDB Cluster and this directory will include all of the

backups for the data that resides on that node. The <node name> is the name of this node as specified

in the RapidsDB cluster.config file. Using the example from that section we would have the directory

/home/rapids/dave/moxe.RDP1 on RapidsDB Cluster node “RDP1” and the directory

/home/rapids/dave/moxe.RDP2 on RapidsDB Cluster node RDP2 etc. Finally, within the node directory

would be directories named using the <id> from the UNLOAD command. Using the examples from the

previous section we would have the following directories on RapidsDB Cluster node “RDP1”:

• /user/rapids/dave/moxe/moxe.RDP1/db_2019_10_31

• /user/rapids/dave/moxe/moxe.RDP1/supplier_2019_10_31

These directories contain the actual backup data. For each table there would be the following files:

• <Connector>.MOXE.<table>.json contains the metadata for this table

• <Connector>.MOXE.<table>$<n>.casks for distributed tables contains the compressed data for

each partition of the table, where <n> is the partition number

• <Connector>.MOXE.<table> for replicated tables contains the compressed data for

the table

Example:

Assuming that the MOXE Connector name as “MOXE”, then the supplier table on RapidsDB Cluster node

“RDP1” would have the following files:

• MOXE.MOXE.SUPPLIER.json

• MOXE.MOXE.SUPPLER$0.casks

• MOXE.MOXE.SUPPLER$1.casks

13.5.2 RELOAD

Syntax:

Where,

<id> is the user-assigned name to identify which backup is to be reloaded<path> is the fully qualified Linux

rapids@db01:/opt/rdp/current $ ls /home/rapids/dave/moxe/moxe.RDP1/parts_2019_10_31

ESCAPE CONNECTOR <MOXE connector name> RELOAD WITH name='<id>' ,path='<path>';

meta.info MOXE.MOXE.PART$1.casks MOXE.MOXE.PARTSUPP$0.casks

MOXE.MOXE.PARTSUPP.json MOXE.MOXE.PART$0.casks MOXE.MOXE.PART.json

MOXE.MOXE.PARTSUPP$1.casks

RapidsDB Release 4.3.3 User Guide Page 282 © Borrui Data Technology Co. Ltd 2022

rapids > set catalog moxe;

rapids > show tables;

0 row(s) returned (0.15 sec)

rapids > escape connector moxe reload with name='db_2019_10_31', path='/home/rapids/dave/moxe';

0 row(s) returned (0.21 sec)

rapids > show tables;

CATALOG_NAME SCHEMA_NAME TABLE_NAME

MOXE MOXE CUSTOMER

MOXE MOXE SUPPLIER

8 row(s) returned (0.17 sec)

path name to the parent directory where the backup files were written.

NOTES:

1. The MOXE Connector definition cannot be changed in any way from the MOXE Connector

definition that was active when the backup was taken. For example, you could not reset the

MOXE database (see 13.6.1), and then create a new MOXE Connector with a different number

of partitions and then use the RELOAD command to reload from backup taken with the prior

Connector definition.

Example 1: reload a MOXE database

MOXE MOXE LINEITEM

MOXE MOXE NATION

MOXE MOXE ORDERS

MOXE MOXE PART

MOXE MOXE PARTSUPP

MOXE MOXE REGION

Example: in this example we have dropped the PART and PARTSUPP tables and then reloaded them

from a backup of those tables.

rapids > drop table part;

0 row(s) returned (0.15 sec)

rapids > drop table partsupp;

0 row(s) returned (0.11 sec)

rapids > show tables;

CATALOG_NAME SCHEMA_NAME TABLE_NAME

RapidsDB Release 4.3.3 User Guide Page 283 © Borrui Data Technology Co. Ltd 2022

8 row(s) returned (0.16 sec)

MOXE MOXE CUSTOMER

MOXE MOXE LINEITEM

MOXE MOXE NATION

MOXE MOXE ORDERS

MOXE MOXE REGION

MOXE MOXE SUPPLIER

6 row(s) returned (0.16 sec)

rapids > escape connector moxe reload with name='parts_2019_10_31',

path='/home/rapids/dave/moxe';

0 row(s) returned (0.17 sec)

rapids > show tables;

CATALOG_NAME SCHEMA_NAME TABLE_NAME

MOXE MOXE CUSTOMER

MOXE MOXE LINEITEM

MOXE MOXE NATION

MOXE MOXE ORDERS

MOXE MOXE PART

MOXE MOXE PARTSUPP

MOXE MOXE REGION

MOXE MOXE SUPPLIER

13.6 Checking the Distribution of Data in a Table (Beta)

13.6.1 Partitioned Tables

The following feature is a beta version, and will undergo change in a future release.

The user can display the distribution of data across the partitions of a MOXE table by querying the MOXE

system table “rapids.moxe.space”. For this beta version, this table is a special internal table that is not

currently integrated into the RapidsDB System Metadata, and it does not share the usual properties of

other tables, such as the ability to use DESCRIBE to show the schema for the table. This table is also not

intended to be joined with other tables. The user can use a WHERE clause to restrict the information

being returned from a query. The schema for this table is shown below:

Column Data Type Description

CATALOG_NAME VARCHAR The name of the MOXE catalog

SCHEMA_NAME VARCHAR The name of the MOXE schema

TABLE_NAME VARCHAR The name of the MOXE table

RapidsDB Release 4.3.3 User Guide Page 284 © Borrui Data Technology Co. Ltd 2022

rapids > select * from rapids.moxe.space where table_name='LINEITEM';

CATALOG_NAME SCHEMA_NAME TABLE_NAME size rows node part

MOXE MOXE LINEITEM 204 1000188 RDP1 0

6 row(s) returned (0.08 sec)

rapids > select count(*) from lineitem;

[1]

6001215

1 row(s) returned (0.41 sec)

size INTEGER The memory allocated to the table measured in MB. Memory is
allocated in 4MB chunks, so the minimum size for any table is
4MB.

rows INTEGER The number of rows in this partition of the table

node VARCHAR The name of the RapidsDB Cluster node for this partition
part INTEGER The partition number

When displaying the information for a partitioned table, a row will be returned for each partition of the

table which will show the maximum size for any row in that partition and the number of rows in that

partition. The example below shows the information for the MOXE table “LINEITEM” which is

partitioned across the three nodes in the RapidsDB Cluster:

MOXE MOXE LINEITEM 204 998978 RDP1 1

MOXE MOXE LINEITEM 204 999590 RDP3 4

MOXE MOXE LINEITEM 204 999672 RDP3 5

MOXE MOXE LINEITEM 204 1000176 RDP2 2

MOXE MOXE LINEITEM 204 1002611 RDP2 3

As can be seen from the above example, the data is evenly distributed across the partitions. In the

event that the data is not evenly distributed then the partitioning column(s) can be changed (see 13.1.1)

to try and achieve a more even distribution. Note: it is not possible to change the partitioning columns

for an existing table, in order to change the partitioning columns the table must be dropped and

recreated with a different partitioning column(s).

The total memory allocated to the table is 1.24GB (204MB * 6), and the average row size is 216 bytes

(1.24GB/6001215).

13.6.2 Monitoring IMPORT into a Partitioned Table

This feature is very useful when importing data into a MOXE table to monitor the progress of an import

operation. The example below shows how the progress of an import operation into a table named

“LINEITEM”:

RapidsDB Release 4.3.3 User Guide Page 285 © Borrui Data Technology Co. Ltd 2022

From one rapids-shell session an import is performed using an IMPEX Connector named

“IMPORT_TPCH”:

From a second rapids-shell session the progress of the import can be monitored:

rapids > select * from rapids.moxe.space;

CATALOG_NAME SCHEMA_NAME TABLE_NAME

size

rows

node

part

MOXE MOXE LINEITEM 64

310272

RDP2

2

MOXE MOXE LINEITEM 64 309760 RDP2 3

MOXE MOXE LINEITEM 64 310528 RDP1 0

MOXE MOXE LINEITEM 64 310272 RDP1 1

MOXE MOXE LINEITEM 48 226166 RDP3 4

MOXE MOXE LINEITEM 48 229121 RDP3 5

6 row(s) returned (0.27 sec)

rapids > select * from rapids.moxe.space;

CATALOG_NAME SCHEMA_NAME TABLE_NAME

size

rows

node

part

MOXE MOXE LINEITEM 112

542720

RDP2

2

MOXE MOXE LINEITEM 112 542208 RDP2 3

MOXE MOXE LINEITEM 112 542976 RDP1 0

MOXE MOXE LINEITEM 112 542976 RDP1 1

MOXE MOXE LINEITEM 96 472752 RDP3 4

MOXE MOXE LINEITEM 96 471501 RDP3 5

6 row(s) returned (0.25 sec)

rapids > select * from rapids.moxe.space;

CATALOG_NAME SCHEMA_NAME TABLE_NAME

size

rows

node

part

MOXE MOXE LINEITEM 204

999590

RDP3

4

MOXE MOXE LINEITEM 204 999672 RDP3 5

MOXE MOXE LINEITEM 204 1000176 RDP2 2

MOXE MOXE LINEITEM 204 1002611 RDP2 3

MOXE MOXE LINEITEM 204 1000188 RDP1 0

MOXE MOXE LINEITEM 204 998978 RDP1 1

6 row(s) returned (0.11 sec)

rapids > select * from rapids.moxe.space;

CATALOG_NAME SCHEMA_NAME TABLE_NAME

size

rows

node

part

rapids > import lineitem from

import_tpch::node://rdp1/software/data/data/tpch/sf1/lineitem.tbl;

0 row(s) returned (26.42 sec)

RapidsDB Release 4.3.3 User Guide Page 286 © Borrui Data Technology Co. Ltd 2022

MOXE MOXE LINEITEM 204 1000188 RDP1 0

MOXE MOXE LINEITEM 204 998978 RDP1 1

MOXE MOXE LINEITEM 204 1000176 RDP2 2

MOXE MOXE LINEITEM 204 1002611 RDP2 3

MOXE MOXE LINEITEM 204 999590 RDP3 4

MOXE MOXE LINEITEM 204 999672 RDP3 5

6 row(s) returned (0.08 sec)

rapids > select count(*) from lineitem;

[1]

6001215

1 row(s) returned (0.41 sec)

13.6.3 Replicated Tables

For replicated tables, the information returned will be shown for each copy of table on each node in the

RapidsDB Cluster. The example below shows the information returned for a replicated table named

“NATION” on a 3-node RapidsDB Cluster:

rapids > select * from rapids.moxe.space where table_name

CATALOG_NAME SCHEMA_NAME TABLE_NAME size rows

='NA

node

TIO N';

part

MOXE MOXE NATION

4

25

RDP3

0

MOXE MOXE NATION 4 25 RDP2 0

MOXE MOXE NATION 4 25 RDP1 0

3 row(s) returned (0.09 sec)

Each copy of the table is 4MB in size, which is the minimum size for a table.

13.7 Changing the MOXE Configuration

In order to change the MOXE configuration dynamically any existing database must be dropped using

the RESET command (see 13.7.1). Before dropping the database the user should consider whether they

want to take a backup of the existing database (see 13.5). The steps to change the MOXE Configuration

are:

1. If needed do an UNLOAD (backup) of the current MOXE database. Remember that this backup

cannot be used to reload the data after the Connector configuration is changed, unless the

configuration is put back to the same configuration used for the backup.

2. If there is sufficient memory, and the user wants to retain the data from the current MOXE

database then do the following:

RapidsDB Release 4.3.3 User Guide Page 287 © Borrui Data Technology Co. Ltd 2022

rapids > set catalog moxe;

rapids > show tables;

CATALOG_NAME SCHEMA_NAME TABLE_NAME

MOXE MOXE CUSTOMER

MOXE MOXE SUPPLIER

8 row(s) returned (0.16 sec)

0 row(s) returned (0.15 sec)

rapids > escape connector moxe reset;

0 row(s) returned (0.16 sec)

rapids > show tables;

0 row(s) returned (0.15 sec)

a. Create a new MOXE Connector with the desired configuration, for this example we will

name that Connector MOXE2 (with the existing Connector being MOXE1)

b. Copy across all of the tables from the MOXE1 database to the newly created MOXE2

database using CREATE moxe2.<table> AS SELECT * FROM moxe1.<table>; for each table

to be copied

c. Issue a RESET command against the MOXE1 database to drop the database (see 13.7.1)

d. Drop the MOXE1 Connector

3. If the data is not being copied then do the following:

a. Issue a RESET command to drop the existing MOXE database (see 13.7.1)

b. Drop the existing Connector

c. Create the new MOXE Connector

13.7.1 Drop Database – RESET

Syntax:

This command will cause the MOXE database to be dropped and all memory allocated to the MOXE

database will be returned for subsequent use.

Example:

MOXE MOXE LINEITEM

MOXE MOXE NATION

MOXE MOXE ORDERS

MOXE MOXE PART

MOXE MOXE PARTSUPP

MOXE MOXE REGION

ESCAPE CONNECTOR <MOXE connector name> RESET;

RapidsDB Release 4.3.3 User Guide Page 288 © Borrui Data Technology Co. Ltd 2022

14 RapidsDB System Metadata Tables
RapidsDB provides a set of system metadata tables that can be used to provide detailed information

about the Federations, Connectors and the underlying tables configured in the system. The following

system metadata tables can be accessed from the rapids.system schema:

Table Name Description

Nodes A list of all nodes in the cluster and metadata about them.

Federations A list of all the Federations

Connectors A list of all of the Connectors in the current Federation

Catalogs A list of the catalogs that can be accessed from the current Federation

Schemas A list of the schemas that can be accessed from the current Federation

Tables Metadata for the tables or views that can be accessed from the current
Federation.

Columns A list of all the columns that can be accessed from the current Federation

Table_Providers A list of all of the tables from each Connector
Indexes Metadata about any indexes defined on

Authenticators A list of all authenticator instances that have been created in the system.

Authenticator_config Lists any additional custom properties about the authenticator instances that
have been created in the system.

Users A list of all users that exist in the system.

User_config Any additional custom properties about users that exist in the system.

Sessions A list of all active sessions across the cluster.

Username_maps A list of defined mappings from an external identifier to RapidsDB usernames.

Pattern_maps A list of defined patterns for transforming an external identifier to a RapidsDB
username.

Queries A list of the currently active queries

Query_stats Internal statistics for all active queries

The system metadata tables are treated the same as any other tables by RapidsDB, and as for any user

tables, it is only necessary to include the catalog and/or schema name when there are multiple tables in

the current Federation that use the same name. Assuming that system metadata table names are all

unique within the current Federation, then the following queries will all be successful:

i) select * from rapids.system.tables;

ii) select * from system.tables;

iii) select * from tables;

Refer to the RapidsDB User Guide for more information.

RapidsDB Release 4.3.3 User Guide Page 289 © Borrui Data Technology Co. Ltd 2022

15 Audit Logging

15.1 Overview

RapidsDB supports the ability to dynamically record what a user, or set of users, are doing within the

RapidsDB cluster so that the actions can be audited for security purposes at a later stage. The audit

logging can be configured to:

1. Log all commands from all users

2. Log all commands for one or more specific users

3. Dynamically turn logging on and off

The commands for controlling audit logging are described in the following sections.

All logging information will be written to a file named audit.log in the “current” directory (e.g.

/opt/rdp/current) on the RapidsDB node where the command was submitted. If needed, all audit

events can be written to a single, centralized file using the settings in the log4j2.dqx.xml file in the “cfg”

directory of the “current” directory (e.g. /opt/rdp/current/cfg).

15.2 Audit Logging Commands

15.2.1 SET AUDIT ENABLED

This command can be used to dynamically enable auditing. This command can only be executed by the

rapids user.

Syntax:

SET AUDIT ENABLED ;

Example:

NOTE: When enabling audit the following rule applies:

1. If no users are currently being explicitly audited, using the ADD AUDIT command (see 10.2.3),

then the system will audit all users.

15.2.2 SET AUDIT DISABLED

This command can be used to dynamically disable auditing. This command can only be executed by the

rapids user.

Syntax:

SET AUDIT DISABLED ;

rapids > set audit enabled;

0 row(s) returned (0.01 sec)

RapidsDB Release 4.3.3 User Guide Page 290 © Borrui Data Technology Co. Ltd 2022

Example:

15.2.3 ADD AUDIT ON USER

This command can be used to specify that a specific user is to be audited. This command can only be

executed by the rapids user.

Syntax:

ADD AUDIT ON USER <user> ;

Example:

NOTE:

1. The act of adding one or more users to be audited will disable the auditing for all other users

who have not been explicitly added to the list of users to be audited. In order to audit all users,

simply remove all the auditing on any specific users using the REMOVE AUDIT command (see

15.2.4)

15.2.4 REMOVE AUDIT ON USER

This command can be used to specify that a specific user is to be audited. This command can only be

executed by the rapids user.

Syntax:

REMOVE AUDIT ON USER <user> ;

Example:

NOTE:

1. If the removal of the auditing for this user results in no specific users being audited then the

system will start auditing all users. Disable auditing if you want to stop all auditing (see 15.2.2)

rapids > set audit enabled;

0 row(s) returned (0.01 sec)

rapids > add audit on user dave;

0 row(s) returned (0.51 sec)

rapids > remove audit on user dave;

0 row(s) returned (0.51 sec)

RapidsDB Release 4.3.3 User Guide Page 291 © Borrui Data Technology Co. Ltd 2022

15.3 Audit Log File Format

Below is an example of entries in the audit.log file which reflect what was logged for the following

commands:

audit.log:

Note that the password for the user is not logged and that the user and password were X-ed out in the

log for the create connector command.

15.4 Configuring the Audit Log

The audit logging is controlled using log4j2, and the configuration is specified in the log4j2.dqx.xml file in

the cfg directory. By default the audit log will be written to a file named audit.log in the RapidsDB

installation directory (e.g. /opt/rdp) on the node where the command originated.

Below is a copy of the file with the default settings for audit logging hilited:

rapids > create user dave password 'dave123';

0 row(s) returned (0.31 sec)

rapids > add audit on user rapids;

0 row(s) returned (0.47 sec)

rapids > add audit on user dave;

0 row(s) returned (0.51 sec)

rapids > select * from tables;

…

rapids > CREATE CONNECTOR PGP6 TYPE POSTGRES WITH PASSWORD='postgres',

URL='jdbc:postgresql://localhost/tpch', USER='postgres' NODE RDP1 ;

0 row(s) returned (0.64 sec)

[INFO] 2020-08-05 13:44:15 audit-log - RAPIDS,RDP1,SSN_1@RDP1,"CREATE USER DAVE "

[INFO] 2020-08-05 13:45:38 audit-log - RAPIDS,RDP1,SSN_1@RDP1,"ADD AUDIT ON USER DAVE;"

[INFO] 2020-08-05 14:23:37 audit-log - RAPIDS,RDP1,SSN_1@RDP1,"select * from tables;"

[INFO] 2020-08-05 14:25:23 audit-log - RAPIDS,RDP1,SSN_1@RDP1,"CREATE CONNECTOR PGP6 TYPE

POSTGRES WITH PASSWORD='XXXX', URL='jdbc:postgresql://localhost/tpch', USER='XXXX' NODE RDP1;"

<?xml version="1.0" encoding="UTF-8"?>

<!-- Copyright 2018 Boray Data Co. Ltd. All rights reserved. -->

<!-- "status" here refers to the log4j internal logging level.

Refer to the property "rootLoggingLevel" to set the RapidsDB log level. -->

RapidsDB Release 4.3.3 User Guide Page 292 © Borrui Data Technology Co. Ltd 2022

<Configuration status="warn" monitorInterval="10">

<Properties>

<!-- The main logging level for RapidsDB. -->

<Property name="rootLoggingLevel">info</Property>

<Property name="filename">./dqx.log</Property>

<Property name="auditname">./audit.log</Property>

<Property name="rollingFilePattern">./dqx-%i.log</Property>

<!--

The pattern that log messages are written out in.

Ref: https://logging.apache.org/log4j/2.x/manual/layouts.html#PatternLayout

%d{ISO8601} = yyyy-mm-ddThh:mm:ss,mmm

[%-22c{2}] = left justify with 22 character width and print the class name ignoring the

first two components of the package name. i.e. the "com.rapidsdata" part.

%-5p: = Left justify with width 5 and print the priority (WARN, INFO, DEBUG, etc).

%m%n = print the message associated with the log event, followed by the line separator.

-->

<Property name="patternFormat">%d{ISO8601} [%-22c{2}] %-5p: %m%n</Property>

</Properties>

<Appenders>

<!-- Where to log to. Must be referenced by a logger below. -->

<RollingFile

name="DqxFile"

fileName="${filename}"

filePattern="${rollingFilePattern}"

append="true">

<PatternLayout pattern="${patternFormat}"/>

<Policies>

<SizeBasedTriggeringPolicy size="20MB"/>

</Policies>

<DefaultRolloverStrategy max="10"/>

</RollingFile>

<RollingFile

 name="AuditFile" fileName="${auditname}"

 filePattern="${log-path}/analytics-%d{yyyy-MM-dd}.log">

 <PatternLayout>

 <pattern>[%-5level] %d{yyyy-MM-dd HH:mm:ss} %c{1} - %msg%n</pattern>

RapidsDB Release 4.3.3 User Guide Page 293 © Borrui Data Technology Co. Ltd 2022

The settings and logging package being used for auditing can be changed as needed. Note that if the configuration is

changed it will need to be changed for each node in the cluster.

By default the audit log will be written to a file named audit.log in the RapidsDB installation directory (e.g.

/opt/rdp) on the node where the command originated. The audit log file location is controlled by the line:

<Property name="auditname">./audit.log</Property>

This can be changed to reference any file, including a mapped/shared file which would enable all of the

logging to be written to a single, shared file. It is also possible to use different Appenders to have the audit

log written elsewhere.

 </PatternLayout>

 <Policies>

 <SizeBasedTriggeringPolicy size="10MB"/>

 </Policies>

 <DefaultRolloverStrategy max="10"/>

 </RollingFile>

</Appenders>

<Loggers>

<!--

Define loggers for packages that we wish to use a different logging level for.

This is typically because these packages are noisy and we want to suppress

their annoying log messages unless they are really important.

Don't change audit-log name!

-->

<Logger name="org.apache.zookeeper" level="error" additivity="false" />

<Logger name="org.I0Itec.zkClient" level="warn" additivity="false" />

<Logger name="org.apache.curator" level="warn" additivity="false" />

<Logger name="com.jcraft.jsch" level="warn" additivity="false" />

<Logger name="org.apache.kafka" level="warn" additivity="false" />

<Logger name="audit-log" level="info" additivity="false">

 <AppenderRef ref="AuditFile" level="info"/>

</Logger>

<!-- The root logger, the main logging level and which appenders to log to. -->

<Root level="${rootLoggingLevel}">

<AppenderRef ref="DqxFile"/>

</Root>

</Loggers>

