
 RapidsDB

RapidsDB User Guide
Release 4.3.3

RapidsDB Release 4.3.3 User Guide Page 1 © Borrui Data Technology Co. Ltd 2022

1 Overview ... 10

1.1 Changes ... 10

1.1.1 Changes from 4.3 .. 10

1.1.2 Changes from 4.2.3.2 .. 10

1.1.3 Changes from 4.2.3.1 .. 10

1.1.4 Changes from 4.2.3 ... 10

1.1.5 Changes from 4.2.2 ... 10

1.1.6 Changes from 4.2.1 ... 10

1.1.7 Changes from 4.2 .. 11

1.1.8 Changes from 4.1 .. 11

1.1.9 Changes from 4.03 .. 11

1.1.10 Changes from R3.6 .. 11

1.1.11 Changes from 3.4.2 ... 11

1.1.12 Changes from Release 3.4.1 .. 11

1.1.13 Changes from Release 3.4 ... 11

1.1.14 Changes from Release 3.3.2 .. 11

1.1.15 Changes from Release 3.3 ... 12

1.1.16 Changes from Release 3.1 ... 13

1.2 What is RapidsDB? .. 14

1.3 RapidsDB Components .. 15

1.3.1 RapidsDB Plex .. 15

1.3.2 SQL Compiler and Optimizer ... 15

1.3.3 Massively Parallel Processing (MPP) Execution Engine .. 15

1.3.4 Federated Connectors ... 15

1.3.5 MOXE .. 16

1.3.6 Client API ... 16

1.3.6.1 RapidsDB Manager .. 16

1.3.6.2 rapids-shell .. 16

1.3.6.3 JBDC... 16

1.3.6.4 Wireline Protocol .. 16

1.3.7 Zookeeper ... 16

1.4 RapidsDB Cluster Topology ... 17

RapidsDB Release 4.3.3 User Guide Page 2 © Borrui Data Technology Co. Ltd 2022

2 Federations, Connectors and Naming .. 18

2.1 Overview ... 18

2.2 Connectors .. 18

2.3 Table Naming .. 19

2.4 Retrieval and Storage of Schema Metadata ... 20

2.5 Object Name Resolution and Case Sensitivity .. 22

2.6 Connector Lookup of Object Names (Default) .. 23

2.7 Case-sensitive Lookups ... 26

2.8 Handling Table Metadata .. 28

2.9 Mapping Catalog, Schema and Table Names .. 28

3 Operational Considerations for Connectors ... 29

3.1 MOXE Connector ... 29

3.2 RDBMS Connectors ... 31

3.3 Generic JDBC Connector ... 32

3.4 Hadoop Connector .. 32

3.4.1 Partitioning .. 32

3.4.1.1 Delimited Files ... 33

3.4.1.2 ORC and Parquet Files ... 34

3.4.2 Hive-style Partitioning ... 35

3.4.3 Writing Data to HDFS .. 36

3.5 IMPEX Connector .. 36

4 Query Interfaces ... 37

4.1 RapidsDB Command Line Interface (rapids-shell)... 37

4.1.1 Running the rapids-shell Locally ... 38

4.1.2 Running the rapids-shell Remotely ... 38

4.1.3 Authentication of the rapids-shell .. 39

4.2 Programmatic Interfaces .. 40

4.2.1 JDBC .. 40

4.2.2 Invoking the rapids-shell Programmatically .. 41

5 SQL Syntax ... 41

5.1 Lexical Structure .. 41

5.1.1 Identifiers and Keywords .. 41

RapidsDB Release 4.3.3 User Guide Page 3 © Borrui Data Technology Co. Ltd 2022

5.1.2 Constants .. 42

5.1.2.1 String Constants .. 42

5.1.2.2 Boolean Constants .. 42

5.1.2.3 Numeric Constants .. 42

5.1.3 Operators .. 43

5.1.4 Special Characters ... 43

5.1.5 Comments ... 44

5.1.6 Operator Precedence .. 44

5.2 Data Types and Type Specifiers .. 45

5.2.1 Data Types ... 45

5.2.2 Type Specifiers .. 46

5.2.3 Use in CAST ... 46

5.2.4 Use in Column Definitions ... 46

5.2.5 System Metadata .. 47

5.2.6 Internal Precision .. 47

5.3 Value Expressions.. 47

5.3.1 Column References ... 48

5.3.2 Operator Invocation .. 48

5.3.3 Function Call .. 48

5.3.4 Aggregate Expression .. 48

5.3.5 Type Cast ... 49

5.3.6 Decimal Expressions and Precision ... 49

5.3.7 Scalar Subquery ... 50

5.3.8 Expression Evaluation Rules .. 51

6 Queries .. 51

6.1 Overview ... 51

6.2 Table Expressions .. 52

6.2.1 The FROM Clause .. 52

6.2.1.1 Joined Tables ... 53

6.2.1.1.1 CROSS JOIN ... 53

6.2.1.1.2 INNER JOIN .. 53

6.2.1.1.3 LEFT OUTER JOIN .. 53

RapidsDB Release 4.3.3 User Guide Page 4 © Borrui Data Technology Co. Ltd 2022

6.2.1.1.4 RIGHT OUTER JOIN .. 53

6.2.1.1.5 ON Clause .. 53

6.2.1.1.6 USING Clause .. 54

6.2.1.2 Table and Column Aliases ... 55

6.2.1.3 Subqueries .. 57

6.2.2 WHERE Clause ... 57

6.2.3 GROUP BY and HAVING Clause ... 58

6.3 SELECT Lists ... 59

6.3.1 SELECT List Items ... 59

6.3.2 Column Labels ... 59

6.3.3 DISTINCT .. 60

6.4 Combining Queries (UNION, INTERSECT, EXCEPT) .. 60

6.4.1 UNION ... 60

6.4.2 INTERSECT ... 61

6.4.3 EXCEPT .. 62

6.5 ORDER BY .. 63

6.6 LIMIT and OFFSET .. 64

6.7 WITH (Common Table Expressions) .. 64

7 Functions and Operators .. 66

7.1 Logical Operators .. 66

7.2 Comparison Operators and BETWEEN .. 66

7.3 Mathematical Operators and Functions ... 67

7.4 String Functions and Operators .. 69

7.5 Pattern Matching – LIKE .. 72

7.6 Date/Time Functions ... 73

7.6.1 EXTRACT(from timestamp) ... 73

7.6.2 CURRENT_TIMESTAMP ... 74

7.6.3 NOW() ... 74

7.6.4 Interval Arithmetic .. 75

7.6.4.1 Interval Types .. 75

7.6.4.2 YEAR-MONTH interval: .. 76

7.6.4.3 DAY-TIME interval: .. 76

RapidsDB Release 4.3.3 User Guide Page 5 © Borrui Data Technology Co. Ltd 2022

7.6.4.4 Support for Interval Arithmetic: .. 77

7.6.4.5 EXTRACT(from interval) .. 78

7.6.4.6 BETWEEN Operator: .. 79

7.7 CONDITIONAL EXPRESSIONS ... 79

7.7.1 CASE .. 79

7.7.2 COALESCE .. 80

7.7.3 IF .. 80

7.7.4 IFNULL ... 81

7.7.5 NULLIF ... 81

7.8 AGGREGATE FUNCTIONS .. 81

7.9 SUB-QUERY EXPRESSIONS ... 82

7.9.1 IN ... 82

7.9.2 NOT IN ... 83

7.9.3 EXISTS .. 83

7.10 Session Functions .. 84

7.10.1 CURRENT_USER ... 84

7.10.2 CURRENT_CATALOG .. 84

7.10.3 CURRENT_SCHEMA ... 85

7.11 VERSION() .. 85

8 QUERY EXECUTION ... 86

8.1 RapidsDB SQL Statement Execution ... 86

8.2 Partitioned Query Plans .. 86

8.3 Non-Partitioned Query Plans .. 88

8.4 Combination of Partitioned and Non-Partitioned Plans ... 90

8.5 RapidsDB Join Algorithms ... 92

9 INSERT ... 92

10 DDL .. 94

10.1 CREATE TABLE ... 94

10.2 Creating MOXE Tables ... 99

10.2.1 Partitioned Tables ... 99

10.2.2 Reference Tables ... 101

10.3 CREATE TABLE [AS] SELECT ... 101

RapidsDB Release 4.3.3 User Guide Page 6 © Borrui Data Technology Co. Ltd 2022

10.3.1 Examples ... 102

10.3.2 Semantics .. 104

10.3.3 Exclusions .. 106

10.3.4 Error Conditions .. 106

10.4 CREATE INDEX ... 107

10.5 DROP TABLE .. 107

10.6 TRUNCATE TABLE .. 108

11 IMPORT/EXPORT Using IMPEX Connector .. 108

11.1 Overview ... 108

11.2 IMPEX Connector Type ... 110

11.3 Creating an IMPEX Connector ... 110

11.4 IMPEX Connector Properties .. 110

11.5 CSV (Delimited) File Formatting .. 115

11.5.1 Text Handling .. 115

11.5.1.1 ESCAPE SEQUENCES .. 115

11.5.1.2 Handling of Leading and Trailing Blanks ... 116

11.5.1.3 Empty Strings .. 117

11.5.2 Dates and Timestamps .. 118

11.5.3 Booleans .. 118

11.5.4 NULL Values .. 119

11.5.5 DELIMITER='<char> | \t' .. 120

11.5.6 ENCLOSED_BY='<char> ' | "'" .. 121

11.5.7 ESCAPE_CHAR='<char>' .. 123

11.5.8 HEADER ... 123

11.5.9 CHARSET .. 124

11.5.10 TRAILING ... 124

11.6 IMPORT References .. 125

11.7 EXPORT References ... 128

11.8 Default IMPORT and EXPORT Connectors .. 130

11.8.1 Usage ... 130

11.8.2 Default Properties ... 130

11.8.3 Changing the IMPEX Properties for the “IMPORT” and “EXPORT” Connectors 130

RapidsDB Release 4.3.3 User Guide Page 7 © Borrui Data Technology Co. Ltd 2022

11.9 IMPORT using SELECT and INSERT .. 131

11.9.1 IMPORT Table Expressions .. 131

11.9.2 IMPORT using a SELECT statement ... 132

11.9.2.1 Overview ... 132

11.9.2.2 Column Naming Using Default Column Names .. 133

11.9.2.3 Column Naming Using AS clause ... 133

11.9.2.4 Column Naming Using HEADER option ... 133

11.9.2.5 Column Data Typing Using GUESS Property ... 134

11.9.2.6 Column Data Typing Using AS clause .. 136

11.9.2.7 Column Skipping/Pruning Using AS Clause ... 137

11.9.2.8 Column Naming and Data Typing Using LIKE clause ... 137

11.9.2.9 RAW Data Format ... 138

11.9.2.10 SELECT FROM FILE ... 138

11.9.2.11 SELECT FROM FOLDER... 142

11.9.2.12 INSERT … SELECT ... 144

11.9.2.13 CREATE AS SELECT ... 146

11.10 Bulk IMPORT ... 149

11.10.1 Bulk IMPORT Using FILES Option .. 150

11.10.2 Bulk IMPORT Using FILES Option With FILTER .. 159

11.10.3 Bulk IMPORT Using FOLDERS Option .. 162

11.11 EXPORT Using SELECT ... 166

11.11.1 EXPORT Using SELECT TO a File ... 167

11.11.2 EXPORT Using SELECT TO a Folder .. 169

11.12 Bulk EXPORT .. 172

11.12.1 Backing Up Files/Sub-Folders When Doing a REPLACE ... 173

11.12.1.1 Backup for FILES option .. 173

11.12.1.2 Backup for FOLDERS option .. 174

11.12.2 Bulk EXPORT Using FILES Option ... 175

11.12.3 Bulk EXPORT Using FOLDERS Option .. 179

11.13 Error Handling ... 182

11.13.1 ERROR_PATH ... 182

11.13.2 ERROR_LIMIT .. 185

RapidsDB Release 4.3.3 User Guide Page 8 © Borrui Data Technology Co. Ltd 2022

11.13.3 Data Conversion Errors ... 185

11.13.4 Mismatched Number of Fields and Columns on INSERT .. 188

11.13.5 Wildcard import to multiple connectors .. 189

12 REFRESH Command .. 190

13 SYSTEM METADATA TABLES ... 190

13.1 OVERVIEW ... 190

13.2 NODES Table ... 191

13.3 FEDERATIONS Table .. 192

13.4 CONNECTORS Table .. 193

13.5 CATALOGS Table ... 193

13.6 SCHEMAS Table ... 194

13.7 TABLES Table ... 195

13.8 INDEXES Table .. 195

13.9 COLUMNS Table .. 196

13.10 TABLE_PROVIDERS Table .. 198

13.11 AUTHENTICATORS Table ... 199

13.12 AUTHENTICATOR_CONFIG Table .. 200

13.13 USERS Table .. 200

13.14 USER_CONFIG Table .. 200

13.15 SESSIONS Table ... 201

13.16 USERNAME_MAPS Table .. 201

13.17 PATTERN_MAPS Table .. 202

13.18 QUERIES Table ... 202

14 Cancelling a Query .. 203

14.1 rapids-shell .. 203

14.2 JDBC .. 204

14.3 CANCEL QUERY command .. 204

15 Performance Tuning .. 206

15.1 EXPLAIN ... 206

15.2 JOIN Order ... 206

15.3 Restrict Amount of Data ... 207

16 Error Messages ... 208

RapidsDB Release 4.3.3 User Guide Page 9 © Borrui Data Technology Co. Ltd 2022

16.1 RapidsDB shell Messages .. 208

16.2 Query Rejection Messages .. 208

16.3 Data Store-Related Messages .. 210

Appendix A SQL Grammar .. 0

RapidsDB Release 4.3.3 User Guide Page 10 © Borrui Data Technology Co. Ltd 2022

1 Overview

1.1 Changes

1.1.1 Changes from 4.3
• New IMPEX options have been added to allow for reading text files line by line, handling files

with a trailing field separator and selective guessing of data types.
• The default setting for the IMPEX Connector GUESS property has been changed to false.
• Section 11 (IMPORT/EXPORT Using IMPEX Connector) has been rewritten to provide better

explanations and examples
• The MOXE Connector now supports comments for columns and tables (introduced for other

Connectors in release 4.3).
• The VERSION() function reports version information for RapidsDB.

1.1.2 Changes from 4.2.3.2
• Added support for IMPORT and EXPORT using the IMPEX Connector
• Minor corrections to some descriptions for string functions
• The MemSQL, MySQL, Oracle, Postgres, Greenplum and generic JDBC Connectors now support

comments for columns and tables.
• The COLUMNS and TABLES system metadata tables have been updated to include a COMMENT

column.

1.1.3 Changes from 4.2.3.1
• Added the REPEAT function to the section on String Operators and Functions
• Removed the character_length function from the section on String Operators and Functions, use

the char_length function instead
• Added the MOD function to the section on Mathematical Operators and Functions.

1.1.4 Changes from 4.2.3
• The POW function was removed from the section on Mathematical Operators and Functions.

Use the POWER function instead.
• The following changes were made to the section on String Operators and Functions:

o The concat function was added
o The “+” operator was added for string concatenation
o The description for the “||” concatenation operator was corrected
o The descriptions for the left and right functions were corrected

1.1.5 Changes from 4.2.2
• This is the GA release. There are some minor documentation updates but no new features

1.1.6 Changes from 4.2.1
• Updated the messages returned when cancelling a query
• Removed the DECODE() function which is not supported

RapidsDB Release 4.3.3 User Guide Page 11 © Borrui Data Technology Co. Ltd 2022

1.1.7 Changes from 4.2
• The user can now create multiple MOXE Connectors and thereby have multiple MOXE schemas

in the same RapidsDB Cluster.
• A MOXE Connector can now be configured to run on a subset of the nodes in a RapidsDB Cluster

1.1.8 Changes from 4.1
• The RapidsSE Connector is not supported for this release
• The DATE datatype is now supported
• A new MySQL Connector has been added
• The Hadoop Connector now supports the ORC format
• UNION, INTERSECT and EXCEPT are supported
• The user can cancel a running query from any of the supported interfaces
• Two new system metadata tables, QUERIES and QUERY _STATS have been added to track

actively running queries

1.1.9 Changes from 4.03
• Licensing has been enabled
• User authentication has been enabled

1.1.10 Changes from R3.6
• Addition of a new, internal, integrated memory storage engine for RapidsDB named MOXE
• The UNION clause is not supported for this release
• The STATS command is not fully supported for this release

1.1.11 Changes from 3.4.2
• RapidsDB now requires users to be authenticated when connecting to the system.
• Added CREATE/DROP/ALTER commands for USERS and AUTHENTICATORS.
• RapidsDB supports user authentication via passwords and Kerberos.
• Added metadata tables to manage users and authenticators.
• Updated JDBC driver to support user authentication.
• A custom SSH port number can now be specified in the cluster configuration.

1.1.12 Changes from Release 3.4.1
• Updates to the description and examples for CREATE TABLE

1.1.13 Changes from Release 3.4
• Added support for TRUNCATE TABLE

1.1.14 Changes from Release 3.3.2
The following lists the major changes from Release 3.3.2:

RapidsDB Release 4.3.3 User Guide Page 12 © Borrui Data Technology Co. Ltd 2022

• The MemSQL, Oracle, Postgres and Generic JDBC Connectors now support the
SCHEMA_METADATA option which allows the user to dynamically update the set of tables being
accessed by the Connector

• The user can now refresh the metadata for a single Connector using the “refresh connector”
command

• The handling of the following options has been changed in the RapidsSE Loader and the Hadoop
Connector:

o ENCLOSED_BY:
 The default has been changed to no enclosing characters
 All data types can now be optionally enclosed
 ENCLOSED_BY has been extended to allow for two characters, where the first

character will define the start of the enclosing, and the second character will
define the end of the enclosing

o DATE_FORMAT – this is a new option to configure how the date portion of timestamps
are formatted

o The handling of NULL values has been updated
• A new version of the rapids-shell is now supported that uses the RapidsDB JDBC Driver for

communicating with the RapidsDB Cluster. This new version can also be installed on any
platform that supports Java

• CREATE …. AS SELECT – support has been added to allow the user to automatically create a table
based on the result set of a query and to have that result set inserted into the table

• The performance of RapidsSE has been significantly improved for the both indexed and non-
indexed access

• The performance of INSERT … SELECT has been improved for the MemSQL, Oracle, Postgres and
Generic JDBC Connectors

1.1.15 Changes from Release 3.3
The following lists the major changes from Release 3.3:

• Support for the following options when loading delimited data into RapidsSE:
o DELIMITER
o TERMINATOR
o ENCLOSED_BY
o ESCAPE_CHAR

• Support for the following options for the Hadoop Connector:
o DELIMITER
o TERMINATOR
o ENCLOSED_BY
o ESCAPE_CHAR
o IGNORE_HEADER

• Support for Hive-style partitioning in the Hadoop Connector

RapidsDB Release 4.3.3 User Guide Page 13 © Borrui Data Technology Co. Ltd 2022

• Changed the name for Hadoop Connector to Hadoop Connector to reflect the fact that the
Connector will support other formats in the future.

• Added support for disabling and enabling Connectors

1.1.16 Changes from Release 3.1
The following list summarizes the major changes from Release 3.1:

• Addition of Connectors for Greenplum, Oracle and Postgres (refer to Section 3.2 for more
details).

• JDBC Connector – the JDBC Connector is a new Connector that supports access to data sources
that provide a JDBC Driver (refer to Sections 3.3 for more details).

• Case-insensitive naming - RapidsDB will now support case-insensitive naming across all of the
Connectors (refer to Section 2 for more details).

• VIEWS supported – the Connectors for MemSQL, Greenplum, Oracle, Postgres, VoltDB, and the
JDBC Connector, will include views along with tables as part of the metadata collected from the
source system.

• RapidsSE:
o Support for multi-column partitioning keys
o Support for multi-column, non-unique indexes
o Support for up to 8 indexes per table
o Support for up to 8 columns per index
o Support for range queries (lower and upper bound). The RapidsDB Execution Engine will

now be able to request a range of column values from a RapidsSE table instead of
having to request all of the rows and then filter the data in the RapidsDB Execution
Engine. RapidsSE will make use of an index to satisfy the range query when there is an
index defined on the column referenced in the range query (refer to section 3.5 for
more details).

o Support for exact key queries. This is a special case of range queries where only a single
value is being requested from the RapidsDB Execution Engine (refer to section 3.5 for
more details).

o Column validation - RapidsSE will check that the data for each column matches the data
type and precision specified for that column.

o Support for LOAD and EXPORT commands from the rapids-shell or JDBC as ESCAPE
commands.

• Hadoop Connector – added the following new features:
o Multi-file Support – The user can use wildcard characters in the file name component

for the file location such that when multiple files match the wildcard specification, all of
the matching files will be accessed as a single table.

o Dynamic Schema Metadata – Allows the user to dynamically change the schema being
used by the Connector so that new tables can be defined, existing table definitions

RapidsDB Release 4.3.3 User Guide Page 14 © Borrui Data Technology Co. Ltd 2022

updated, or existing table definitions can be removed, without requiring the user to
drop and recreate the Connector with the new schema

• Index metadata - Connectors will now return information about indexes if they are supported by
the underlying data store, such as MemSQL

1.2 What is RapidsDB?
RapidsDB is a fully parallel, distributed, in-memory federated query system that is designed to support
complex analytical SQL queries running against a set of different data stores. Figure 1 below shows the
major components of the RapidsDB system:

Figure 1. RapidsDB Architecture

RapidsDB provides unified SQL access to a wide variety of data sources, which can include relational and
non-relational data sources. Data can be joined across all of the data sources. For this release,
RapidsDB supports access to the following data sources:

• MOXE – internal in-memory data store for RapidsDB
• The following RDBMS data sources:

o MySQL
o MemSQL
o Oracle
o Postgres

RapidsDB Release 4.3.3 User Guide Page 15 © Borrui Data Technology Co. Ltd 2022

o Greenplum
• Any data source that supports access via JDBC not including the RDBMS data sources above, for

example, Spark
• IMPEX – provides access to csv formatted disk files
• Hadoop/HDFS delimited, ORC and Parquet files either through the Hive Metastore or directly

against the files in HDFS

1.3 RapidsDB Components

1.3.1 RapidsDB Plex
The RapidsDB Plex is the internal communication fabric that is used between nodes in a RapidsDB
cluster.

1.3.2 SQL Compiler and Optimizer
RapidsDB has an advanced, cost-based, SQL Compiler & Optimizer that is responsible for taking a user’s
SQL query and building the optimum query execution plan for that query. The query plan will then get
passed to the Massively Parallel Processing (MPP) Execution Engine for execution of the query.

1.3.3 Massively Parallel Processing (MPP) Execution Engine
RapidsDB has its own fully parallel, MPP Execution Engine that is responsible for execution of the query
plan generated by the RapidsDB SQL Compiler & Optimizer. The MPP Execution Engine is responsible
for the execution of the query plans in concert with the Federated Connectors that provide the access to
the underlying data sources. The Execution Engine is responsible for executing those parts of the query
execution plan that cannot get pushed down to the underlying data source (see Federated Connectors
below for details on query pushdown), and for delivering the final results of the query to user. For
example, if the query involves a JOIN between a MOXE table and a Hive table, then the Execution Engine
will perform the JOIN by getting the data from the MOXE and Hive tables using the MOXE and Hive
Connectors.

1.3.4 Federated Connectors
The RapidsDB Federated Connectors are a set of dynamically, pluggable Connectors that control access
to the underlying data stores that make up the federated database. The Connectors manage the
metadata for the objects (typically tables or files) in the remote data store and present that metadata to
the RapidsDB query execution engine as an ANSI-based SQL schema, thereby allowing the user to view
the objects from the entire set of data sources as a single, federated SQL database.

The Connectors are responsible for managing data type conversion between the native data store and
the RapidsDB query system which allows for the uniform handling of data types across all of the data
stores. The Connectors present the data to the RapidsDB Execution Engine as rows and columns, which
allows the data to be queried using standard ANSI SQL, and provides a uniform query interface
regardless of the data source.

In order to optimize performance we generally want to have the underlying data source perform as
much of the query as possible to reduce the amount of data that has to be processed by the RapidsDB

RapidsDB Release 4.3.3 User Guide Page 16 © Borrui Data Technology Co. Ltd 2022

Execution Engine, rather than simply pulling all of the data from the data source and processing it within
RapidsDB. For example, when the data source is a relational database such as Oracle, that data source
is typically capable of executing a join on the tables in that data source, or it can filter the data based on
predicates in the query.

RapidsDB supports an optimization feature called “Adaptive Query Pushdown” to deal with this. With
Adaptive Query Pushdown, each Connector involved in the execution of a query plan analyzes the query
plan and decides which parts of the query plan it can push down to the data source and for the
remaining parts of the query the Connector will determine the optimum way to retrieve the data
required to complete those parts of the query plan.

1.3.5 MOXE
MOXE (in-Memory Operational eXtreme Engine) is a parallel, fully distributed, internal in-memory data
store that is co-resident with RapidsDB, sharing the same process space as the other RapidsDB
components. MOXE uses hash partitioning to distribute the data across multiple partitions, and each
partition operates in parallel when delivering data to the Execution Engine. The system can support
multiple MOXE Connectors, each of which manages a single schema.

1.3.6 Client API
RapidsDB provides the following interfaces for accessing RapidsDB:

1.3.6.1 RapidsDB Manager
The RapidsDB Manager is a web-based management console for configuring and managing the RapidsDB
cluster.

1.3.6.2 rapids-shell
The rapids-shell is a command line interface for configuring connectors and submitting queries. The
rapids-shell uses the RapidsDB Unified JDBC Driver to communicate with the RapidsDB Cluster.

1.3.6.3 JBDC
RapidsDB supports the JDBC programmatic interface via the RapidsDB Unified JDBC Driver. The Unified
RapidsDB JDBC Driver uses the RapidsDB Wireline Protocol (see below). Refer to the Unified JDBC Driver
manual for more information.

1.3.6.4 Wireline Protocol
The RapidsDB Wireline Protocol is a platform-independent, Thrift-based, protocol that can be used for
programmatically accessing RapidsDB from many different programming languages. It is a specification
of the messages that flow between the client and server and sequencing of those messages. The Thrift-
based API is a low-level interface that enables higher-level APIs to be developed to support almost any
programming language. Refer to the RapidsDB Wireline Protocol Specification for more information.

1.3.7 Zookeeper
RapidsDB uses Zookeeper (version 3.4.6 or later) for configuration management across the RapidsDB
cluster.

RapidsDB Release 4.3.3 User Guide Page 17 © Borrui Data Technology Co. Ltd 2022

1.4 RapidsDB Cluster Topology
Figure 2 below shows the topology of a RapidsDB Cluster, in this example there are 5 nodes in the
RapidsDB Cluster.:

Figure 2. RapidsDB Cluster Topology

• rapids-shell – provides the command line interface for sending queries to the RapidsDB Cluster.
The rapids-shell uses the RapidsDB JDBC Driver to communicate with the RapidsDB Cluster.

• User Applications can communicate with the RapidsDB Cluster using either the RapidsDB JDBC
Driver or any other interfaces built on top of the RapidsDB Wireline Protocol.

• DQC (Distributed Query Coordinator) – queries can be submitted for execution over the Wireline
Protocol to any node in the RapidsDB Cluster. The node where the query is submitted is called
the DQC node, and this node is responsible for coordinating the execution of the query.

In the example above, two queries are submitted to the RapidsDB Cluster, Query 1 is submitted
to Node 1, which becomes the DQC for that query, and Query 2 is submitted to Node 2, which
becomes the DQC for that query.

RapidsDB Release 4.3.3 User Guide Page 18 © Borrui Data Technology Co. Ltd 2022

In addition, when configuring the RapidsDB Cluster, one node must be configured as a DQC
node, and this is the node where the RapidsDB cluster is installed from and where the RapidsDB
cluster is stopped and started.

• DQE (Distributed Query Executor) – the nodes where the query execution is performed are
called the DQE nodes. A DQE node will have a Connector running on it that is participating in
the query. For example, if the query includes a MOXE table, then each node in the RapidsDB
cluster where the MOXE Connector responsible for that table is running will participate in the
query.

2 Federations, Connectors and Naming

2.1 Overview
In RapidsDB, a Federation is a logical grouping of a set of zero or more Connectors. Federations are
named, and RapidsDB has a default Federation named “DEFAULTFED”. At this time, the DEFAULTFED
Federation is the only Federation available. In a future release support will be provided for using
multiple Federations.

2.2 Connectors
The Connectors manage the metadata for the objects (typically tables or files) in the remote data store
and present that metadata to the RapidsDB query execution engine as an ANSI-based SQL schema,
thereby allowing the user to view the objects from the entire set of data sources as a single, federated
SQL database.

The Connectors are responsible for managing data type conversion between the native data store and
the RapidsDB query system which allows for the uniform handling of data types across all of the data
stores. The Connectors present the data to the RapidsDB Execution Engine as rows and columns, which
allows the data to be queried using standard ANSI SQL, and provides a uniform query interface
regardless of the data source.

In order to optimize performance we generally want to have the underlying data source perform as
much of the query as possible to reduce the amount of data that has to be processed by the RapidsDB
Execution Engine, rather than simply pulling all of the data from the data source and processing it within
RapidsDB. For example, when the data source is a relational database such as Oracle, that data source
is typically capable of executing a join on the tables in that data source, or it can filter the data based on
predicates in the query.

RapidsDB supports an optimization feature called “Adaptive Query Pushdown” to deal with this. With
Adaptive Query Pushdown, each Connector involved in the execution of a query plan analyzes the query
plan and decides which parts of the query plan it can push down to the data source, and then only the
query results from the pushed down query need to be streamed to the Execution Engine to complete
the query execution. For the remaining parts of the query the Connector will determine the optimum

RapidsDB Release 4.3.3 User Guide Page 19 © Borrui Data Technology Co. Ltd 2022

way to retrieve the data required to complete those parts of the query plan, and then stream that data
to the Execution Engine.

2.3 Table Naming
All tables (and views) in RapidsDB are identified using an ANSI standard 3-part name of
<catalog>.<schema>.<table>. The 3-part name has to be unique within a Federation, if the name is
ambiguous an error will be returned when the name is referenced in a query. Each Connector is
responsible for managing its own 3-part name space. The metadata for catalogs, schemas and tables can
be stored in RapidsDB under an alternate name to prevent name conflicts (see section 2.9 below). The
user can map any part of the 3-part name to a user-specified named using the “AS” clause as part of the
Connector definition. Refer to section 2.9 for more information on mapping names. Where the
underlying data source supports 3-part names, the Connector will use that 3-part name by default to
identify each table. Where the underlying data source does not support a catalog and/or schema name,
the Connector will provide the missing part(s) of the name. The table below shows the default
assignment of catalog names and schema names for the different Connectors supported in this release:

Connector Type Catalog Name Schema Name

MOXE Connector name Connector name

MemSQL Connector name MemSQL database name (specified
using the “DATABASE” option as part
of the Connector definition)

MySQL Connector name MySQL database name

Oracle Connector name Oracle schema name

Postgres Database name (specified using
the “DATABASE” option as part
of the Connector definition)

Postgres schema name

Greenplum Database name (specified in
JDBC connection url as part of
the Connector definition)

Greenplum schema name

Hadoop Connector name PUBLIC

Hadoop with Hive
Metastore

Connector name Hive database name

JDBC If the data source supports 3-
part naming then this will be
the data source catalog name,

 If the data source supports 3-part
naming then this will be the data
source schema name, otherwise it will
be the catalog or schema name

RapidsDB Release 4.3.3 User Guide Page 20 © Borrui Data Technology Co. Ltd 2022

otherwise it will be the
Connector name

returned by the JDBC Driver for that
data source, whichever is not NULL.

The table below shows some examples for a Postgres and Oracle Connector:

CREATE CONNECTOR PG1 TYPE POSTGRES WITH DATABASE= 'dw1', USER='adm', PASSWORD='admpsw'
NODE NODE1 SCHEMA PRODUCTION;

Catalog Name Schema Name Table Name

dw1 production history

dw1 production items

dw1 production parts

CREATE CONNECTOR ORA TYPE ORACLE WITH USER='dba', PASSWORD='dba123', HOST='apollo',
SID='orcl' NODE NODE5;

Catalog Name Schema Name Table Name

orcl customers ORDERS

orcl customers CUSTOMER

orcl customers HISTORY

2.4 Retrieval and Storage of Schema Metadata
A Connector is responsible for retrieving the schema metadata (catalogs, schemas, tables, views) from
the underlying data store that the Connector connects to, and for subsequently making that information
available for use by the RapidsDB Query Planner. A Connector will save the schema metadata using the
character case provided by the underlying data store. For example, by default Postgres returns all of
the schema metadata information in lower case, whereas MemSQL will return the metadata for the
table name in the case that was used when the table was created. The next section will describe how
this schema metadata information is used.

The following table shows the schema metadata as stored by MemSQL and Postgres and the metadata
stored by RapidsDB:

MEMSQL RAPIDSDB

RapidsDB Release 4.3.3 User Guide Page 21 © Borrui Data Technology Co. Ltd 2022

 DATABASE TABLE CATALOG SCHEMA TABLE

 WEST customer_west MEM1 WEST customer_west

 WEST ORDERS MEM1 WEST ORDERS

POSTGRES RAPIDSDB

DATABASE SCHEMA TABLE CATALOG SCHEMA TABLE

sales east customer_east sales east customer_east

sales east orders sales east orders

As can be seen from the table above, the schema information is stored in RapidsDB in exactly the same
case as the underlying data store, with “MEM1” being used as the Catalog name for MemSQL because
MemSQL does not support catalogs, and that is the name of the MemSQL Connector in this example.

The user can check on the schema metadata by querying the RapidsDB System Metadata tables in the
RAPIDS.SYSTEM schema:

• CATALOGS
• SCHEMAS
• TABLES
• COLUMNS

Below are some sample queries against the System Metadata tables for tables managed by MOXE:

RapidsDB Release 4.3.3 User Guide Page 22 © Borrui Data Technology Co. Ltd 2022

2.5 Object Name Resolution and Case Sensitivity
When the user submits a query, the RapidsDB Query Planner will need to determine which Connector is
responsible for each of the tables referenced in a SQL query. Each table name can optionally be
qualified with a catalog and/or schema name. In order to determine which Connector is responsible for
a table, the RapidsDB Query Planner will send a request to all of the Connectors with the name of the
table , optionally qualified with the catalog and/or schema name, and each Connector will then look up
the table name in its schema metadata information. By default the RapidsDB Query Planner follows
SQL conventions, converting all table names to upper case before sending the request to the
Connectors, unless any part of the name (catalog, schema, or table) is enclosed in identifier delimiters
(back-ticks or double quotes), in which case that portion of the name will be sent using the case
specified in the query. The table below shows some examples:

Original Query Object Name Sent to Connectors for Resolution

Select * from customer; CUSTOMER

Select * from west.customer; WEST.CUSTOMER

Select * from “customer”; customer

Select * from “west”.”customer”; west.customer

RapidsDB Release 4.3.3 User Guide Page 23 © Borrui Data Technology Co. Ltd 2022

2.6 Connector Lookup of Object Names (Default)
The following describes the default way that Connectors will do lookup of the object names sent from
the Query Planner. Each Connector maintains its own metadata information and controls the matching
of names used in queries to names in the underlying data store. What the following will show is that the
user can specify the object names as case-insensitive names, even when the underlying data store,
such as MemSQL, is case-sensitive.

By default, each active Connector will do a case-insensitive lookup of the object name provided by the
Query Planner, informing the Query Planner if it has a match for that object name. In the event that
there are two or more matches for the object name, then an error will be returned to the user indicating
that the object name is ambiguous. Assuming that the object name is unique, when the Connector
builds the query to be submitted to the back-end data store, it will use the case as seen in the object
metadata retrieved by the Connector (see Retrieval and Storage of Schema Metadata above). This
means that for the vast majority of queries, the RapidsDB user can specify object names without regard
for case. The Connector will ensure that the case used for the object names will match what the
underlying data store expects. The only time that this would be a problem is when the underlying data
store uses case-sensitive names (eg MemSQL) and the user has used the same object name but with
different cases (eg customer and CUSTOMER). For this situation an option, IGNORE_CASE, is provided
which when set to FALSE will instruct the Connector to perform a case-sensitive lookup. Refer to section
2.7 below for more details on IGNORE_CASE.

The following examples show how this name resolution can be applied to two Connectors, MemSQL
(which is case-sensitive), and Postgres (by default, the object metadata information is stored in lower
case).

MEMSQL RAPIDSDB

DATABASE TABLE SCHEMA TABLE

WEST customer_west WEST customer_west

WEST ORDERS WEST ORDERS

POSTGRES RAPIDSDB

SCHEMA TABLE SCHEMA TABLE

east customer_east east customer_east

east orders east orders

RapidsDB Release 4.3.3 User Guide Page 24 © Borrui Data Technology Co. Ltd 2022

As described in section 2.4 above, Connectors preserve the case of names retrieved from the underlying
data store but allow case-insensitive matching of names.

The following examples will go through the name resolution process using the metadata above:

1. Select * from customer_west;

The Query Planner would ask the Connectors for the object name “CUSTOMER_WEST”, and the
Connectors would do a case-insensitive match on that name, and the MemSQL Connector would
have a match.

The MemSQL Connector would then build (condense) the following query to be sent to
MemSQL:
 select * from WEST.customer_west;

2. Select * from CUSTOMER_WEST;

The Query Planner would ask the Connectors for the object name “CUSTOMER_WEST”, and the
Connectors would do a case-insensitive match on that name, and the MemSQL Connector would
have a match.

The MemSQL Connector would then build (condense) the following query to be sent to
MemSQL:
 select * from WEST.customer_west;

Note that in this case the query as specified by the user had the table name in upper case, but
when the query was sent to MemSQL the table name was converted to lower case to match
what was provided by MemSQL when the schema metadata was retrieved.

3. Select * from WEST.CUSTOMER_WEST;

The Query Planner would ask the Connectors for the object name “WEST.CUSTOMER_WEST”,
and the Connectors would do a case-insensitive match on that name, and the MemSQL
Connector would have a match.

The MemSQL Connector would then construct (condense) the following query to be sent to
MemSQL using the correct case for any table names and doing any necessary conversion for SQL
syntax differences:
 select * from WEST.customer_west;

RapidsDB Release 4.3.3 User Guide Page 25 © Borrui Data Technology Co. Ltd 2022

Note that in this case the query as specified by the user had the schema and table names in
upper case, but when the query was sent to MemSQL the table name was converted to lower
case to match what was provided by MemSQL when the schema metadata was retrieved.

4. select * from orders;

The Query Planner would ask the Connectors for the object name “ORDERS”, and the
Connectors would do a case-insensitive match on that name, and both the MemSQL and
Postgres Connectors would have a match, and so the query would be rejected with an
ambiguous name error. The user would have to specify the schema name to disambiguate the
query as shown in example 5 below.

5. select * from west.orders;

The Query Planner would ask the Connectors for the object name “WEST.ORDERS”, and the
Connectors would do a case-insensitive match on that name, and the MemSQL Connector would
have a match.

The MemSQL Connector would then construct (condense) the following query to be sent to
MemSQL using the correct case for any table names and doing any necessary conversion for SQL
syntax differences:
 select * from WEST.orders;

Note that in this case the query as specified by the user had the schema and table names in
lower case, but when the query was sent to MemSQL the schema name was converted to upper
case to match what was provided by MemSQL when the schema metadata was retrieved.

What is important to note is that the user can specify the object names as case-insensitive names, even
when the underlying data store, such as MemSQL, is case-sensitive.

The following table shows another set of table names as stored by MemSQL and the names as stored by
MemSQL Connector:

MEMSQL RAPIDSDB

DATABASE TABLE SCHEMA TABLE

WEST customer_west WEST customer_west

WEST CUSTOMER_WEST WEST CUSTOMER_WEST

In this example, we have the same table name but they are specified using different cases.

RapidsDB Release 4.3.3 User Guide Page 26 © Borrui Data Technology Co. Ltd 2022

The following examples will go through the name resolution process using the metadata above:

1. Select * from CUSTOMER_WEST;

The Query Planner would ask the Connectors for the object name “CUSTOMER_WEST”, and the
Connectors would do a case-insensitive match on that name, and the MemSQL Connector would
now have two matches, and so the query would be rejected with an ambiguous name error.

2. Select * from “customer_west”;

The Query Planner would ask the Connectors for the object name “customer_west”, and the
Connectors would do a case-insensitive match on that name, and the MemSQL Connector would
still have two matches, and so the query would be rejected with an ambiguous name error.
Even when the user specified a quoted name, because the Connector did a case-insensitive
lookup, both names matched.

The MemSQL and JDBC Connectors provide an option to handle this rare situation, IGNORE_CASE, which
is described in section 2.7 below.

2.7 Case-sensitive Lookups
In the very rare case that the underlying data store uses case-sensitive naming (eg MemSQL) AND the
user has used the same name but with different cases for two tables in the same schema, then the
IGNORE_CASE option can be set to FALSE to instruct the Connector to use case-sensitive matching of
names provided by the Query Planner.

The following table shows the database/schema and table names as stored by MemSQL and Postgres,
and the names as stored by RapidsDB:

MEMSQL RAPIDSDB

DATABASE TABLE SCHEMA TABLE

WEST customer_west WEST customer_west

WEST CUSTOMER_WEST WEST CUSTOMER_WEST

WEST orders WEST orders

POSTGRES RAPIDSDB

SCHEMA TABLE SCHEMA TABLE

east customer_east east customer_east

RapidsDB Release 4.3.3 User Guide Page 27 © Borrui Data Technology Co. Ltd 2022

east orders east orders

The following examples will go through the name resolution process using the metadata above, with the
IGNORE_CASE option set to ‘FALSE’ for the MemSQL Connector:

1. Select * from customer_west;

In this case this might not result in what the user expected because the original query had the
table name in lower case, but because the table name was not enclosed within double quotes,
the Query Planner will convert the name to upper case. In order to access the table name
“customer_west” the table name must be quoted and specified in lower case as in the example
below.

In this example, the Query Planner would ask the Connectors for the object name
“CUSTOMER_WEST”, and the MemSQL Connector would do a case-sensitive match on that
name, and the MemSQL Connector would match the MemSQL table named
“CUSTOMER_WEST”.

The MemSQL Connector would then construct (condense) the following query to be sent to
MemSQL:
 select * from WEST.CUSTOMER_WEST;

2. Select * from “customer_west”;

The Query Planner would ask the Connectors for the object name “customer_west”, and the
MemSQL Connector would do a case-sensitive match on that name, and the MemSQL Connector
would match the MemSQL table named “customer_west”.

The MemSQL Connector would then build (condense) the following query to be sent to
MemSQL:
 select * from WEST.customer_west;

3. Select * from west.orders;

The Query Planner would ask the Connectors for the object name “WEST.ORDERS”, and the
MemSQL Connector would do a case-sensitive match on that name, and the MemSQL Connector
would not find a match because both the schema name and table do no match (due to the
case).

4. Select * from “WEST”.”orders”;

RapidsDB Release 4.3.3 User Guide Page 28 © Borrui Data Technology Co. Ltd 2022

The Query Planner would ask the Connectors for the object name “WEST.orders”, and the
MemSQL Connector would do a case-sensitive match on that name, and the MemSQL Connector
would find a match for the table named “orders”.

The MemSQL Connector would then build (condense) the following query to be sent to
MemSQL:
 select * from WEST.orders;

It is highly recommended that all object names managed by a Connector with the IGNORE_CASE option
set to false are specified as quoted names with the case of the object names set to match the case used
by the underlying data store.

2.8 Handling Table Metadata
When configuring Connectors (refer to the Installation and Management Guide for more information),
the user can specify which tables from the remote data source should be included for querying. By
default, a Connector will include the metadata for all of the tables that can be accessed from the
underlying data source. The user can restrict which tables will be included when configuring a
Connector by explicitly listing the catalogs, schemas and/or table names to be made available (see
Installation and Management Guide for more information).

2.9 Mapping Catalog, Schema and Table Names
When configuring a Connector, the user can map one or more parts of the 3-part name to local names
that are used when querying through RapidsDB. The Connector maps these local names back to the
original names used by the underlying data source. Figure 3 below shows two MemSQL Connectors,
MEM1 and MEM2, each with the table “CUSTOMERS”, but in different schemas named “EAST” and
“WEST”:

Figure 3. Mapping Catalog, Schema and Table Names

The query ‘SELECT * FROM customers’ would fail with an error indicating that the table name was
ambiguous. To disambiguate the name the query would have to be changed to ‘SELECT * FROM
east.customers’ to access the CUSTOMERS table managed by Connector MEM1.

RapidsDB Release 4.3.3 User Guide Page 29 © Borrui Data Technology Co. Ltd 2022

When configuring the MemSQL Connectors the user could map the table named “EAST.CUSTOMERS” to
“EAST_CUSTOMERS” and the table named “WEST.CUSTOMERS” to “WEST_CUSTOMERS”, and then the
table names would be unique (for each Connector) and would not have to be qualified using the schema
name, eg.

CREATE CONNECTOR MEMSQL1
 TYPE MEMSQL WITH host=’192.168.1.1’, port=’3306’, user=’user1’, database=’EAST’
 NODE DB1
 CATALOG *
 SCHEMA *
 TABLE CUSTOMERS as EAST_CUSTOMERS;

SELECT * FROM east_customers WHERE …

Refer to the Installation and Management Guide for details on how to do name mapping.

3 Operational Considerations for Connectors
 Each of the RapidsDB Connectors exhibits different operational aspects which are described in the
following sections.

3.1 MOXE Connector
The MOXE Connector operates as a multi-partitioned fully distributed Connector. When creating a
MOXE Connector (see Installation and Management Guide for more information) the user can specify
which nodes in the RapidsDB Cluster that Connector is to run on, the number of partitions used by
MOXE on each node in the RapidsDB cluster, and the maximum amount of memory to be used on each
node. MOXE supports both distributed and replicated tables. For distributed tables, each table
managed by MOXE will be partitioned across all of the nodes on which the Connector is active and then
distributed across all of the partitions on each node. The distribution of data across the partitions will
be achieved by hashing the value of the partitioning column(s) specified for the table (as part of the
CREATE TABLE – see section 10.1).

The user can create multiple MOXE Connectors on a system, each Connector will have its own catalog
and schema which will match the Connector name.

When providing the data to Execution Engine for query processing, MOXE only passes pointers to the
data to the Execution Engine, no physical copying of data occurs. The diagram below shows a two node
RapidsDB cluster with a query being sent to Node 1 which acts as the query coordinator (DQC). The
query results in all partitions of the table being scanned in parallel on both nodes and a set of row
pointers (called row references) will be streamed to the Execution Engine on each node, and for each
row reference the Execution Engine will ask for the value for the column O_ORDERPRIORITY, which can
be accessed using the row reference, and the predicate filter on O_ORDERPRIORITY will be applied. If
the O_ORDERPRIORITY value satisfies the predicate, then the Execution Engine will request the values

RapidsDB Release 4.3.3 User Guide Page 30 © Borrui Data Technology Co. Ltd 2022

for the O_ORDERKEY and O_ORDERSTATS columns for that row and then the results from Node 2 will be
pipelined to Node 1 where the data from Node 2 will be merged with the data from Node 1 and the final
result set will be returned to the client:

Figure 4. SELECT query processing with MOXE

For replicated tables, a full copy of each table will be replicated to each node in the RapidsDB cluster.
Replicated Tables are typically used for storing smaller dimension tables so that when doing a JOIN with
a larger table, the JOIN can be completed on each node without having to send any data from the
replicated table across the network. In the example below, the NATION table is replicated and so the
join between the NATION and SUPPLIER tables will be executed in parallel on both nodes, and the
results from Node 2 will be pipelined to Node 1 where the data from Node 2 will be merged with the
data from Node 1 and the final result set will be returned to the client:

RapidsDB Release 4.3.3 User Guide Page 31 © Borrui Data Technology Co. Ltd 2022

Figure 5. SELECT query processing with MOXE Replicated Table

MOXE also provides support for backing up either a complete database or individual tables to disk and
then the user can subsequently restore the backups. (refer to the Installation and Management Guide
for more information on configuring MOXE).

3.2 RDBMS Connectors
The RDBMS (MySQL, MemSQL, Oracle, Postgres and Greenplum) Connectors operate as non-
partitioned, single node Connectors. This means that access to the underlying RDBMS will be from a
single node in the RapidsDB Cluster. The user can specify multiple nodes for an RDBMS Connector when
configuring the Connector, and RapidsDB will then use the node to access the underlying RDBMS
database that would minimize movement of data over the network. Where possible, the user’s query
will be pushed down to the underlying RDBMS database and only the result of the query will get
returned, and in this case the query execution will take advantage of any parallelism in the underlying
RDBMS database. In the event that all or part of a query cannot be pushed down (for example, a
federated query involving two or more data sources), then the data will be fetched from the RDBMS
database by the Connector, and pipelined to the RapidsDB Execution Engine for further processing.
Even in this case, any predicates will get applied to the data being fetched, to minimize the amount of

RapidsDB Release 4.3.3 User Guide Page 32 © Borrui Data Technology Co. Ltd 2022

data being retrieved. The data pipelining allows the query to proceed as soon as the data starts to arrive
from the data source, and in conjunction with the buffering performed by the Connector when
retrieving the data, the net result is that only a small subset of the entire dataset being retrieved will be
in memory at any one time. Figure 6 below shows a MemSQL Connector running on the same node as
the MemSQL Aggregator that the MemSQL Connector will be using.

 Figure 6. SELECT query processing with MemSQL Connector

3.3 Generic JDBC Connector
The JDBC Connector operates as a non-partitioned, single node Connector, in exactly the same way as
the RDBMS Connectors (see 3.2). Refer to section Installation and Management Guide for more
information on configuring a JDBC Connector.

3.4 Hadoop Connector

3.4.1 Partitioning
The Hadoop Connector operates as a multi-partitioned, fully distributed Connector. The user can specify
which nodes in the RapidsDB cluster the Hadoop Connector is to run on, and how many partitions are
supported per node. The partitioning with the Hadoop Connector is logical partitioning with all of the

RapidsDB Release 4.3.3 User Guide Page 33 © Borrui Data Technology Co. Ltd 2022

partitioning being done within the Connector, not at the physical file level. This means that the user
can change the partitioning, such as changing the number of partitions per node, without having to
change the physical data in HDFS.

3.4.1.1 Delimited Files
When reading data from an HDFS delimited file, the Hadoop Connector will allocate a portion of the
HDFS file to each node assigned to that Connector, and then on each node where Hadoop Connector is
running the data will be split evenly across a set of partition readers so that the data will be read in
parallel across the RapidsDB cluster. If there are n nodes assigned to a Hadoop Connector and m
partitions allocated per node, then there will be n*m parallel reads against the HDFS file. The data
being read is also buffered, with the records being pipelined to the RapidsDB Execution Engine for
filtering and other processing. This means that it is possible for the Hadoop Connector to read files that
are larger than the available memory on the nodes in the RapidsDB Cluster. Figure 7 below shows a
two-node Hadoop Connector with m partitions per node:

Figure 7. SELECT query processing with Hadoop Connector with delimited files

RapidsDB Release 4.3.3 User Guide Page 34 © Borrui Data Technology Co. Ltd 2022

In this example, all of the columns from the data files in /data/orders/tpch directory will be returned to
the Execution Engine, which will then apply the predicate O_CUSTKEY=101 to filter the data and then
only return the requested columns to the client.

When writing data to delimited files, if the data is being written in parallel, then the data being written
will be distributed round-robin over all of the partitions and then written out to the target files (refer to
the Installation and Management Guide for more information on configuring the Hadoop Connector).

3.4.1.2 ORC and Parquet Files
When reading ORC and Parquet files, the Hadoop Connector will calculate the number of HDFS blocks
across all of the files to be read, and then divide up the blocks across the partition readers on each node
where the Hadoop Connector is running. For example, if there are 10 files to be read and each file has 3
HDFS blocks, then there are 30 blocks to be read and if the Hadoop Connector was running on 6 nodes
with 4 partitions per node, then the 30 blocks would be split across the 24 partition readers.

When reading ORC and Parquet files only the columns required to process the query from the
associated table will be read. In addition, any column predicates will get used to restrict the data being
read from the Parquet files. The example below illustrates this:

RapidsDB Release 4.3.3 User Guide Page 35 © Borrui Data Technology Co. Ltd 2022

Figure 8. SELECT query processing with Hadoop Connector with Parquet files

In this example, only the data for the columns O_ORDERKEY and O_CUSTKEY will be read from the
Parquet file(s) in the directory /data/tpch/orders, and only for those rows where the predicate
O_CUSTKEY=101 is satisfied.

3.4.2 Hive-style Partitioning
The Hadoop Connector also supports Hive-style partitioning where the data stored in HDFS is arranged
in directories where the directory names match the values for columns in the table. For example, in the
following HDFS file structure below, the data is partitioned over the columns “region” and “country”,
and so the files under /data/user/region=North America/country=US would match with a region of
“North America” and country of “US”.

/data/user/region=North America/country=US
/data/user/region=North America/country=CA
/data/user/region=South America/country=BR
/data/user/region=South America/country=ME

RapidsDB Release 4.3.3 User Guide Page 36 © Borrui Data Technology Co. Ltd 2022

When a query of the form SELECT <column list> FROM <table> WHERE REGION=’North America’ AND
COUNTRY=’US’; is submitted, the Hadoop Connector will use the predicate “REGION=’North America’
AND COUNTRY=’US’ “ to restrict the files to be read to those files in the directory
/data/user/region=North America/country=US. Refer to the Installation and Management Guide for
more information.

3.4.3 Writing Data to HDFS
The Hadoop Connector also supports writing the results of an INSERT or INSERT … SELECT statement to
HDFS. Refer to the Installation and Management Guide for more information.

3.5 IMPEX Connector
The IMPEX Connector is a new style of Connector that was introduced in Release 4.3. An IMPEX
Connector can import and export data directly to and from disk files and also supports the ability to
treat disk files as regular tables which can participate in federated queries (ie. in SELECT or INSERT
queries). The implication of this is that the user does not need to go through an ETL process in order to
load the data from the files into regular tables, such as MOXE tables. Instead, the files can be queried
directly from the disk. For Release 4.3, an IMPEX Connector can read csv (delimited) files from any
node in the RapidsDB Cluster, in future releases other file systems such as Amazon S3, Google Cloud and
HDFS will be supported along with other file formats such as Parquet and ORC. After any data has been
written to disk (in a supported format, ie csv for Release 4.3) it is available for querying. If needed, the
user can also use an IMPEX Connector to load all or a subset of the data into regular tables, such as
MOXE tables or other federated data sources such as Oracle, Postgres or MySQL. When reading the
data from disk, an IMPEX Connector supports both column pruning and predicate pushdown so that
only the data that is needed for the query is passed to the RapidsDB Execution Engine thereby allowing
very large data files to be processed by the RapidsDB Engine where the size of the data can exceed the
memory of the system. When reading the disk files the user does not need to define a schema for the
table, an IMPEX Connector can estimate the data type for each field in the data by reading a sample of
the data and the imputing the data type based on the actual data. This means that users can do fast
exploration of data files without having to first assign a schema for the table. For example, by using a
LIMIT clause the user can quickly look at a subset of the data and then can use other SQL predicates to
do more sophisticated analysis of the data. If the schema for a file (or set of files) is known, then the
user can provide that schema to the IMPEX Connector as part of the query.

An IMPEX Connector also supports the capability to write query results to files. Finally, an IMPEX
Connector supports bulk import to allow for the rapid loading of data from disk files into any federated
tables, and bulk export to allow for the rapid writing of the contents of any federated tables to disk files.
Bulk EXPORT provides the ability for the user to take a snapshot of the federated database, and bulk
IMPORT provides the ability to reload that snapshot.

RapidsDB Release 4.3.3 User Guide Page 37 © Borrui Data Technology Co. Ltd 2022

In this example the IMPEX Connector is reading data from folder “/data/new_orders” on RapidsDB node
“node3” and that data is then getting joined with data from two MOXE tables, “cust” and “inv”.

4 Query Interfaces

4.1 RapidsDB Command Line Interface (rapids-shell)
The rapids-shell is the command line interface to RapidDB and is started up using the rapids-shell.sh
shell script file on Linux or the rapids-shell.bat file on Windows.

The user will be able to provide the following set of optional startup options:

Option Default Description

-h <ip address> localhost The ip address for the node in the RapidsDB
Cluster to be used when sending commands to
the RapidsDB Cluster

-p <port number> 4333 The port number for the RapidsDB JDBC Driver
on the node to be used when sending
commands to the RapidsDB Cluster

-s Runs the rapids-shell in script mode

-t Specifies that the data types for each column
should be included in the csv result set

RapidsDB Release 4.3.3 User Guide Page 38 © Borrui Data Technology Co. Ltd 2022

-k Use Kerberos authentication instead of
username and password.

4.1.1 Running the rapids-shell Locally
The rapids-shell can be run from any node in the RapidsDB Cluster, and is run from the RapidsDB cluster
installation directory (eg /opt/rdp/current):

1. cd /opt/rdp/current
2. ./rapids-shell.sh

You will be prompted for a username and password before seeing the rapids prompt (see 4.1.3 below
for more information on user authentication):

[rapids@boray05 current]$./rapids-shell.sh
Please enter a username > rapids
Please enter the password for user 'RAPIDS' >
rapids >

3. You should then be able to execute SQL queries or any of the supported rapids-shell command
(refer to the Rapids-shell User Guide for more details). For example:

4.1.2 Running the rapids-shell Remotely
The rapids-shell can also be run remotely from any node that has TCP/IP connectivity to the RapidsDB
Cluster. To install the rapids-shell on a remote system use the following steps:

1. Copy the rapids-shell-<version>.zip file from the 'shell' directory located in the RapidsDB
installation directory on any node in the RapidsDB Cluster to the target system

2. Unzip the rapids-shell-<version>.zip file
3. The rapids-shell can then be started by running either the rapids-shell.sh file on Linux or the

rapids-shell.bat file on Windows.
4. Refer to the Rapids Shell User Guide for more information.

RapidsDB Release 4.3.3 User Guide Page 39 © Borrui Data Technology Co. Ltd 2022

4.1.3 Authentication of the rapids-shell
When the rapids-shell is started normally it will interactively ask for the username and password to be
used for authentication. When entering the username interactively, rapids-shell will treat the name like
a SQL object identifier by folding the name to uppercase unless it is surrounded by double quotes, in
which case the case will be preserved. Care must be taken if case-sensitive usernames are used.

The password being entered will be treated as case sensitive and does not require any quoting.

To avoid being prompted to enter a username and password when invoking rapids-shell, simply define
the following shell or environment variables when starting rapids-shell:

• RDP_USERNAME
• RDP_PASSWORD

Shell variables can be defined on the same line used to invoke the rapids-shell. They will only exist for
the rapids-shell process.

Example 1:

$ RDP_USERNAME=rapids RDP_PASSWORD=rapids ./rapids-shell.sh

rapids > select current_user from tables limit 1;

?1

--

RAPIDS

1 row(s) returned (0.02 sec)

Alternatively, the variables can be exported to be environment variables before the rapids-shell is
invoked.

Example 2:

$ export RDP_USERNAME=rapids

$ export RDP_PASSWORD=rapids

$./rapids-shell.sh

rapids > select current_user from tables limit 1;

?1

RapidsDB Release 4.3.3 User Guide Page 40 © Borrui Data Technology Co. Ltd 2022

--

RAPIDS

1 row(s) returned (0.02 sec)

When defining the shell or environment variables for the username, please note that it will be treated
the same as if it was entered interactively. i.e., unquoted usernames will be folded to uppercase.
However, entering double quotes around a shell/environment variable is not as straight forward as it
seems because the unix shell will first interpret the quotes and remove them before they are seen by
the rapids-shell. As a result, the double quotes need to be escaped by single quotes that will be removed
by the unix shell.

Example 3:

$ export RDP_USERNAME='"john"'  note outer single quotes and inner
double quotes.

$ export RDP_PASSWORD=john

$./rapids-shell.sh

rapids > select current_user from tables limit 1;

?1

--

john  note case sensitive name.

1 row(s) returned (0.02 sec)

Please refer to the Rapids-shell User Guide for more details.

To use Kerberos authentication with the RapidsDB shell, please refer to the Rapids-shell User Guide for
details.

4.2 Programmatic Interfaces

4.2.1 JDBC
Refer to the RapidDB JDBC Driver manual for details on using the JDBC interface.

RapidsDB Release 4.3.3 User Guide Page 41 © Borrui Data Technology Co. Ltd 2022

4.2.2 Invoking the rapids-shell Programmatically
The RapidsDB shell provides a scripting option to facilitate the submission of queries programmatically.
Refer to the Rapids Shell User Guide for more information.

5 SQL Syntax
This section describes the SQL syntax supported by RapidsDB.

5.1 Lexical Structure
A SQL command is composed of a sequence of tokens, terminated by a semicolon (";"). Which tokens
are valid depends on the syntax of the particular command.

A token can be a keyword, an identifier, a quoted identifier, a literal (or constant), or a special character
symbol. Additionally, comments can occur in SQL input. Comments are not tokens, they are effectively
equivalent to whitespace.

Here is an example of syntactically valid SQL command:

SELECT * FROM CUSTOMER WHERE CUSTOMER_NAME = ‘Smith’;

Refer to Appendix B for details of the SQL grammar supported by RapidsDB.

5.1.1 Identifiers and Keywords
Tokens such as SELECT or WHERE are examples of keywords, that is, words that have a fixed meaning in
the SQL language. In the example query above, the tokens CUSTOMER and CUSTOMER_NAME are
examples of identifiers. They identify names of tables, columns, or other database objects, depending
on the command they are used in. Therefore they are sometimes simply called "names". Keywords and
identifiers have the same lexical structure, meaning that one cannot know whether a token is an
identifier or a keyword without knowing the language.

SQL identifiers and keywords must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (_). Subsequent characters in an identifier or keyword can be letters,
underscores, or digits (0-9).

RapidsDB supports identifiers up to a maximum length of 32,000 characters, but underlying data
systems may reject very long identifiers in CREATE TABLE statements.

By default, SQL keywords and identifiers are converted internally to uppercase. Therefore:

SELECT * FROM CUSTOMER WHERE CUSTOMER_NAME = ‘Smith’;

can equivalently be written as:

Select * FroM customer Where Customer_name = ‘Smith’;

A convention often used is to write keywords in upper case and names in lower case, e.g.:

RapidsDB Release 4.3.3 User Guide Page 42 © Borrui Data Technology Co. Ltd 2022

SELECT * FROM customer WHERE customer_name = ‘Smith’;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by enclosing
an arbitrary sequence of characters in back-ticks (`) or double-quotes ("). A delimited identifier is always
recognized as an identifier, never a keyword. So "select" could be used to refer to a column or table
named "select", whereas an unquoted select would be taken as a keyword and would therefore provoke
a parse error when used where a table or column name is expected. The example can be written with
quoted identifiers like this:

SELECT * FROM “CUSTOMER” WHERE “CUSTOMER_NAME” = ‘Smith’;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. Quoted identifiers are case sensitive.

5.1.2 Constants
There are three kinds of implicitly-typed constants: strings, booleans and numbers. Constants can also
be specified with explicit types. These alternatives are discussed in the following subsections.

5.1.2.1 String Constants
A string constant is an arbitrary sequence of characters bounded by single quotes ('), for example 'This is
a string'. To include a single-quote character within a string constant, write two adjacent single quotes,
e.g., 'Dianne''s horse'. Note that this is not the same as a double-quote character (").

5.1.2.2 Boolean Constants
A boolean constant can either be the 4 character string true, with no enclosing quotes, or the 5
character string false, with no enclosing quotes.

e.g.

rapids > select true=true;
 [1]

 true

5.1.2.3 Numeric Constants
Numeric constants are accepted in these general forms:

digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

where digits is one or more decimal digits (0 through 9). At least one digit must be before or after the
decimal point, if one is used. At least one digit must follow the exponent marker (e), if one is present.

RapidsDB Release 4.3.3 User Guide Page 43 © Borrui Data Technology Co. Ltd 2022

There cannot be any spaces or other characters embedded in the constant. Note that any leading plus or
minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42
3.5
4.
.001
5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent has the data type INTEGER. A
numeric constant containing a decimal point but no exponent has the data type DECIMAL. A numeric
constant containing an exponent has the data type FLOAT. For more information on data types, see 5.2
below.

5.1.3 Operators
The following operators are supported:

'+'
'-'
'*'
'/'
'%'
'||'
'<'
'<='
'='
'!='
'<>'
'>='
'>'

5.1.4 Special Characters
Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element is
described. This section only exists to advise the existence and summarize the purposes of these
characters.

Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some cases
parentheses are required as part of the fixed syntax of a particular SQL command.

Commas (,) are used in some syntactical constructs to separate the elements of a list.

RapidsDB Release 4.3.3 User Guide Page 44 © Borrui Data Technology Co. Ltd 2022

The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command, except
within a string constant or delimited identifier.

The asterisk (*) is used in some contexts to denote all the columns of a table.

The period (.) is used in numeric constants, and to separate schema, table, and column names.

5.1.5 Comments
C-style block comments can be used where the comment begins with /* and extends to the matching
occurrence of */. These block comments cannot nest.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

Example:

SELECT /*Customer query */ * FROM customer /* Source table */ WHERE customer_name = ‘Smith’;

5.1.6 Operator Precedence
The table below shows the operator precedence rules:

Operator Associativity Description

. Left Table/column name separator

+ - Right Unary plus, unary minus

* / % Left Multiplication, division, modulo

+ - Left Addition, subtraction

BETWEEN IN LIKE

< > = <= >= <> Comparison operators

IS NULL, IS NOT NULL

NOT Right

AND Left

OR left

RapidsDB Release 4.3.3 User Guide Page 45 © Borrui Data Technology Co. Ltd 2022

5.2 Data Types and Type Specifiers

5.2.1 Data Types
Because the RapidsDB execution engine is implemented in the Java language and uses the Java Virtual
Machine (JVM) for runtime support, RapidsDB data types are implemented internally as Java classes.
Every data value handled by the system is an “instance” of a Java class. The Java class implements the
behaviors and functionality for values of that class.

For simplicity and to facilitate type harmonization across different data systems, RapidsDB organizes
these underlying Java classes into abstract “SQL types” that are similar in concept to the data types used
in most SQL-based data management systems. A RapidsDB user will generally specify data types in terms
of the SQL types, leaving the choice of Java class to the Connector and the execution engine. Connectors
translate the user’s requested SQL types to equivalent types in the associated DBMS or data store.
When presenting data to the execution engine, the Connector will select a suitable Java class (unless the
user has explicitly specified a class to be used).

The RapidsDB runtime includes a library of Java classes that implement the standard behaviors and
capabilities for SQL types, including RapidsDB-SQL standard functions (see section 7) and type
conversions. The system can also be extended with other Java classes (“User Defined Types”) which
offer extended or specialized capabilities. A User Defined Type may or may not correspond to any
standard SQL type.

The table below shows the RapidsDB SQL types, along with the underlying Java class used by default in
the execution engine and most Connectors. Note, however, that a given Connector may select a
different Java class, for example to provide extended numeric precision or to handle data that doesn’t
correspond to a SQL type.

SQL Type Default internal Java class Description
INTEGER com.rapidsdata.stdlib.FastInteger 64-bit signed integer, nullable1
DECIMAL com.rapidsdata.stdlib.FastDecimal2 64-bit decimal (17 digits precision), nullable
FLOAT com.rapidsdata.stdlib.FastFloat 64-bit IEEE floating point, nullable1
DATE com.rapidsdata.stdlib.FastDate 64-bit date, range 0000-01-01 to 9999-12-31,

nullable
TIMESTAMP com.rapidsdata.stdlib.FastTimestamp 64-bit microsecond timestamp, nullable
BOOLEAN com.rapidsdata.stdlib.FastBoolean Boolean, nullable
VARCHAR com.rapidsdata.stdlib.FastString3 Up to 32k UTF-16 characters, nullable

Notes:

1. The FastInteger and FastFloat types reserve the lowest possible numeric value to represent NULL

2. Some Connectors may use java.math.BigDecimal

3. Some Connectors may use java.lang.String

RapidsDB Release 4.3.3 User Guide Page 46 © Borrui Data Technology Co. Ltd 2022

5.2.2 Type Specifiers
A RapidsDB type specifier specifies a data type and desired precision. Type specifiers are used in the
CAST operator (see 5.2.3) and also the column definitions in CREATE TABLE statements (see 10.1) and
the USING clause of the CREATE CONNECTOR statement (see Installation and Management Guide).

The interpretation of size, precision and scale values in a RapidsDB type specifier depends on the data
type. In this release the interpretations are as follows:

Type Default interpretation of size / scale / precision
INTEGER Precision in decimal digits (if unspecified: 17)
DECIMAL Precision in decimal digits, scale in decimal digits (if unspecified: 17, 2)
FLOAT Size of mantissa in binary digits (if unspecified: 53)
VARCHAR Maximum length in characters (if unspecifed: limited by Java class)

NOTES:
1. The value for precision of a FLOAT is interpreted as the number of binary digits in the mantissa. This

is per ANSI SQL. A 53-bit mantissa corresponds to a standard 64-bit IEEE double precision floating
point value. Expressed in decimal, the precision is 22 digits.

2. The type specifier may optionally be followed by a USING clause to explicitly specify a Java class to
be used internally.

5.2.3 Use in CAST
In principle, CAST should precisely convert a value to the specified data type and precision or generate
an error if this is not possible. So, for example, CAST(myColumn AS INTEGER(3)) should produce a value
between -999 and +999 or generate an overflow exception if the value of myColumn lies outside that
range. In practice, the behavior may deviate in certain cases, depending on whether the CAST operation
is pushed down to the underlying data store (in particular, some data stores fail to generate overflow
exceptions where expected).

5.2.4 Use in Column Definitions
When used in a column definition (CREATE TABLE or CREATE CONNECTOR WITH TABLE USING), a type
specifier specifies the minimum requirement for a column. The underlying system may optionally
substitute a definition of greater size or precision. It may not, however, substitute a definition of lesser
size or precision. So, for example, INTEGER(4) specifies a column that can store values in the range -9999
to +9999 (and obeys the rules for integer math). An underlying data store may create the corresponding
physical database column as, for example, a 16-bit integer.

If a column definition specifies a capability that exceeds the maximum capability of either the RapidsDB
Execution Engine or an underlying Data Store, the definition will be rejected. For example, INTEGER(22)
will be rejected by RapidsDB because the maximum precision for integers in RapidsDB is 19 decimal
digits.

RapidsDB Release 4.3.3 User Guide Page 47 © Borrui Data Technology Co. Ltd 2022

5.2.5 System Metadata
Column information in the COLUMNS table in the RapidsDB System Metadata (see 13.9) reflects the
type, size, precision and scale of columns as reported by the underlying system and interpreted by
RapidsDB. The information may differ from the definitions used to create the tables. The column data
types are shown as standardized RapidsDB types. Size, precision and scale may exceed the values
specified in a RapidsDB CREATE TABLE statement as noted above.

5.2.6 Internal Precision
The type specifiers affect storage, reading, writing and conversion of data values but do not control the
precision of calculations on those values during query execution. Query calculations are performed by
the RapidsDB Execution Engine (or the query engines of underlying Data Stores) with precision no less
than the following:

• For integer values, 64-bit signed integers.
• For floating point values, 64-bit double precision (Java IEEE 754).
• For character values, Java String values of up to 2GB (using UTF-16 encoding).
• For binary values, Java byte arrays of up to 2GB in size.

5.3 Value Expressions
Value expressions are used in a variety of contexts, such as in the target list of the SELECT command or
in search conditions. The result of a value expression is sometimes called a scalar, to distinguish it from
the result of a table expression (which is a table). Value expressions are therefore also called scalar
expressions (or even simply expressions). The expression syntax allows the calculation of values from
primitive parts using arithmetic, logical, set, and other operations.

A value expression is one of the following:

• A constant or literal value
• A column reference
• An operator invocation
• A function call
• An aggregate expression
• A type cast
• A scalar subquery
• Another value expression in parentheses (used to group subexpressions and override

precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location in Chapter 5. An example is the IS NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

RapidsDB Release 4.3.3 User Guide Page 48 © Borrui Data Technology Co. Ltd 2022

5.3.1 Column References
A column can be referenced in the form:

qualifier.columnname

qualifier is the name of a table, or an alias for a table defined by means of a FROM clause. The qualifier
and separating dot can be omitted if the column name is unique across all the tables being used in the
current query.

5.3.2 Operator Invocation
There are three possible syntaxes for an operator invocation:

• expression operator expression (binary infix operator)
• operator expression (unary prefix operator)
• expression operator (unary postfix operator) where the operator token follows the syntax rules

of Section 5.1.3, or is one of the keywords AND, OR, and NOT

5.3.3 Function Call
The syntax for a function call is the name of a function followed by its argument list enclosed in
parentheses:

function_name ([expression [, expression ...]])

For example, the following computes maximum value of column C1:

 max(c1)

The list of built-in functions is in Section 5.

5.3.4 Aggregate Expression
An aggregate expression represents the application of an aggregate function across the rows selected by
a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ...])
aggregate_name (ALL expression [, ...])
aggregate_name (DISTINCT expression [, ...])

where aggregate_name is a system-defined aggregate and expression is any value expression that does
not itself contain an aggregate .

The first form of aggregate expression invokes the aggregate once for each input row. The second form
is the same as the first, since ALL is the default. The third form invokes the aggregate once for each
distinct value of the expression (or distinct set of values, for multiple expressions) found in the input
rows.

RapidsDB Release 4.3.3 User Guide Page 49 © Borrui Data Technology Co. Ltd 2022

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield
null are discarded.

For example, count(*) yields the total number of input rows; count(f1) yields the number of input rows
in which f1 is non-null, since count ignores nulls; and count(distinct f1) yields the number of distinct
non-null values of f1.

5.3.5 Type Cast
A type cast specifies a conversion from one data type to another:

CAST (expression AS type)

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. A cast applied to an
unadorned string literal represents the initial assignment of a type to a literal constant value, and so it
will succeed for any type (if the contents of the string literal are acceptable input syntax for the data
type).

The table below shows the supported cast operations:

 Target

Source INTEGER DECIMAL FLOAT STRING TIMESTAMP BOOLEAN BINARY NULL

INTEGER Y Y Y Y N N N N

DECIMAL Y Y Y Y N N N N

FLOAT Y Y Y Y N N N N

STRING Y Y Y Y Y Y N N

TIMESTAMP N N N Y Y N N N

BOOLEAN N N N Y N Y N N

BINARY N N N N N N Y N

NULL Y Y Y Y Y Y Y Y

5.3.6 Decimal Expressions and Precision
Decimal expressions are mathematical expressions with a data type DECIMAL. Decimal values occur
either because a column is defined as type DECIMAL or because a value is converted to DECIMAL using
the CAST operator.

RapidsDB Release 4.3.3 User Guide Page 50 © Borrui Data Technology Co. Ltd 2022

A decimal value has a precision, which is the total number of significant digits in the value, and a scale,
which is the number of digits to the right of the decimal point.

When the RapidsDB Query Planner analyzes a decimal expression, it assumes a "canonical" precision
and scale for each operator in the expression. The actual precision and scale depend on the Java
class(es) involved in the calculations. The canonical precision and scale rules are designed to preserve
sufficient decimal places to fully represent the possible result of the calculation. The following table
summarizes the canonical precision assumptions. p1 and s1 represent the precision and scale of the first
operand of a math operator; p2 and s2 represent the precision and scale of the second operand.

Operation Canonical Precision and Scale

+ or - Scale = max(s1, s2)
Precision = max(p1 - s1, p2 - s2) + 1 + scale

* Scale = s1 + s2
Precision = p1 + p2 + 1

/ Scale = max(4, s1 + p2 + 1)
Precision = p1 - s1 + s2 + scale

Note that in all cases, the actual maximum precision of a decimal calculation depends on the underlying
Java class. During execution of a query, if a calculation produces a result whose precision would exceed
the maximum, the scale is typically reduced to preserve the integral part of the result.

The precision and scale of a decimal result can be specified explicitly using the CAST operator (see 5.3.5).

5.3.7 Scalar Subquery
A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 6 for information about writing queries.) The SELECT query is executed and the
single returned value is used as the expression result. It is an error to use a query that returns more than
one row or more than one column as a scalar subquery. (But if, during a particular execution, the
subquery returns no rows, there is no error; the scalar result is taken to be NULL.) The subquery can
refer to variables from the surrounding query, which will act as constants during any one evaluation of
the subquery.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max(pop) FROM cities WHERE cities.state = states.name) FROM states;

RapidsDB Release 4.3.3 User Guide Page 51 © Borrui Data Technology Co. Ltd 2022

5.3.8 Expression Evaluation Rules
The query optimizer may significantly reorganize a query to improve performance. As a result, the order
of evaluation of query expressions is not defined. Subqueries may be executed in any order or in
parallel. Notably, the arguments of an operator or function are not necessarily evaluated left-to-right or
in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();

then somefunc() would (probably) not be called at all.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan.

A common situation is trying to avoid division by zero in a WHERE clause. Attempting to check for a zero
value first is not reliable:

SELECT ... WHERE x > 0 AND y/x > 1.5;

A better solution is to use the NULLIF function (see section 7.7.5).

Note that CASE statements are also not guaranteed to execute in order. For example, a CASE cannot
prevent evaluation of an aggregate expression contained within it, because aggregate expressions are
computed before other expressions in a SELECT list or HAVING clause are considered. For example, the
following query can cause a division-by-zero error despite seemingly having protected against it:

SELECT CASE WHEN min(employees) > 0
 THEN avg(expenses / employees)
 END
 FROM departments;

The min() and avg() aggregates are computed concurrently over all the input rows, so if any row has
employees equal to zero, the division-by-zero error will occur before there is any opportunity to test the
result of min(). Instead, use a WHERE clause to prevent problematic input rows from reaching an
aggregate function in the first place.

6 Queries

6.1 Overview
The general syntax of the SELECT command is

RapidsDB Release 4.3.3 User Guide Page 52 © Borrui Data Technology Co. Ltd 2022

SELECT select_list FROM table_expression [sort_specification]

The following sections describe the details of the select list, the table expression, and the sort
specification.

A simple kind of query has the form:

SELECT * FROM table1;

The select list specification * means all columns that the table expression happens to provide. A select
list can also select a subset of the available columns or make calculations using the columns. For
example, if table1 has columns named a, b, and c you can make the following query:

SELECT a, b + c FROM table1;

(assuming that b and c are of a numerical data type). See Section 5.3 for more details.

FROM table1 is a simple kind of table expression: it reads just one table. In general, table expressions
can be complex constructs of base tables, joins, and subqueries. But you can also omit the table
expression entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could call
a function this way:

SELECT round(123.99);

6.2 Table Expressions
A table expression computes a table. The table expression follows the FROM clause and is optionally
followed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table, a
so-called base table, but more complex expressions can be used to modify or combine base tables in
various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of
successive transformations performed on the table derived in the FROM clause. All these
transformations produce a virtual table that provides the rows that are passed to the select list to
compute the output rows of the query.

6.2.1 The FROM Clause
The FROM Clause derives a table from one or more other tables given in a comma-separated table
reference list.

FROM table_expression [, table_expression [, ...]]

RapidsDB Release 4.3.3 User Guide Page 53 © Borrui Data Technology Co. Ltd 2022

A table expression can be a table name (optionally qualified by <catalog>.<schema> or <schema>), or a
derived table such as a subquery, a JOIN construct, or complex combinations of these. If more than one
table expression is listed in the FROM clause, the tables are cross-joined (that is, the Cartesian product
of their rows is formed; see below). The result of the FROM list is an intermediate virtual table that can
then be subject to transformations by the WHERE, GROUP BY, and HAVING clauses and is finally the
result of the overall table expression.

6.2.1.1 Joined Tables
A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of a joined table is

T1 join_type T2 [join_condition]

Joins of all types can be chained together, or nested: either or both T1 and T2 can be joined tables.
Parentheses can be used around JOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses associate left-to-right.

The following describes the Join Types supported:

6.2.1.1.1 CROSS JOIN
T1 CROSS JOIN T2

For every possible combination of rows from T1 and T2 (i.e., a Cartesian product), the joined table will
contain a row consisting of all columns in T1 followed by all columns in T2. If the tables have N and M
rows respectively, the joined table will have N * M rows.

6.2.1.1.2 INNER JOIN
For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join condition with
R1.

6.2.1.1.3 LEFT OUTER JOIN
First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition with
any row in T2, a joined row is added with null values in columns of T2. Thus, the joined table always has
at least one row for each row in T1.

6.2.1.1.4 RIGHT OUTER JOIN
First, an inner join is performed. Then, for each row in T2 that does not satisfy the join condition with
any row in T1, a joined row is added with null values in columns of T1. This is the converse of a left join:
the result table will always have a row for each row in T2.

6.2.1.1.5 ON Clause
The ON clause is the most general kind of join condition: it takes a Boolean value expression of the same
kind as is used in a WHERE clause. A pair of rows from T1 and T2 match if the ON expression evaluates
to true.

RapidsDB Release 4.3.3 User Guide Page 54 © Borrui Data Technology Co. Ltd 2022

6.2.1.1.6 USING Clause
The USING clause is a shorthand that allows you to take advantage of the specific situation where both
sides of the join use the same name for the joining column(s). It takes a comma-separated list of the
shared column names and forms a join condition that includes an equality comparison for each one. For
example, joining T1 and T2 with USING (a, b) produces the join condition ON T1.a = T2.a AND T1.b =
T2.b.

To put this together, assume we have tables t1, with columns num and name:

num name

1 a

2 b

3 c

and t2 with columns num and value:

num value

1 xxx

3 yyy

5 zzz

then we get the following results for the various joins:

rapids > select * from t1 inner join t2 using(num);
 NUM NAME NUM VALUE
 --- ---- --- -----
 1 a 1 xxx
 3 c 3 yyy

2 row(s) returned (0.08 sec)
rapids > select * from t1 inner join t2 on t1.num=t2.num;
 NUM NAME NUM VALUE
 --- ---- --- -----
 1 a 1 xxx
 3 c 3 yyy

2 row(s) returned (0.06 sec)
rapids > select * from t1 left join t2 on t1.num=t2.num;
 NUM NAME NUM VALUE
 --- ---- --- -----

RapidsDB Release 4.3.3 User Guide Page 55 © Borrui Data Technology Co. Ltd 2022

 1 a 1 xxx
 3 c 3 yyy
 2 b NULL NULL

3 row(s) returned (0.08 sec)
rapids > select * from t1 right join t2 on t1.num=t2.num;
 NUM NAME NUM VALUE
 --- ---- --- -----
 1 a 1 xxx
 3 c 3 yyy
 NULL NULL 5 zzz

3 row(s) returned (0.04 sec)

The join condition specified with ON can also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

Notice that placing the restriction in the WHERE clause produces a different result:

This is because a restriction placed in the ON clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join. That does not matter with inner joins, but it
matters a lot with outer joins.

6.2.1.2 Table and Column Aliases
A temporary name can be given to tables and complex table expressions to be used for references to
the derived table in the rest of the query. This is called a table alias.

To create a table alias, write
FROM table_expression AS alias

Or

FROM table_expression alias

The AS keyword is optional. The alias can be any valid identifier.

RapidsDB Release 4.3.3 User Guide Page 56 © Borrui Data Technology Co. Ltd 2022

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM some_very_long_table_name s JOIN another_fairly_long_name a ON s.id = a.num;

The alias becomes the new name of the table expression within the current query—the original name
cannot be used elsewhere in the query. Thus, this is not valid:

SELECT * FROM my_table AS m WHERE my_table.a > 5; -- wrong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
to itself, e.g.:

SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the
alias b to the second instance of my_table, but the second statement assigns the alias to the result of
the join:

SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...

SELECT * FROM (my_table AS a CROSS JOIN my_table) AS b ...

An extended form of table aliasing gives temporary names to the columns of the table, as well as the
table itself:

FROM table_expression [AS] table_alias (column_alias1 [, column_alias2 [, ...]])

If fewer column aliases are specified than the number of columns in the table expression, the remaining
columns are not renamed and will not participate in the query. This syntax is especially useful for self-
joins or subqueries.

When an alias is applied to the output of a JOIN clause, the alias hides the original name(s) within the
JOIN. For example:

SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...

is valid SQL, but:

SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

NOTE: The alias name cannot be a reserved word unless it is enclosed in double quotes.
For example, the following query will fail because the word “order” is a reserved word:

RapidsDB Release 4.3.3 User Guide Page 57 © Borrui Data Technology Co. Ltd 2022

select cast(f_col1 as integer) as order from t1 where f_col2 > 480;

To use a reserved word as an identifier, enclose it in back-ticks:

select cast(f_col1 as integer) as `order` from t1 where f_col2 > 480;

6.2.1.3 Subqueries
Subqueries specifying a derived table must be enclosed in parentheses and may optionally be assigned a
table alias name (as in Section 5.2.1.2). For example:

SELECT * FROM (SELECT * FROM table1) AS alias_name

This example is equivalent to SELECT * FROM table1 AS alias_name. More interesting cases, which
cannot be reduced to a plain join, arise when the subquery involves grouping or aggregation.

For more information see Section 7.9.

6.2.2 WHERE Clause
The syntax of the WHERE Clause is

WHERE <search_condition>

where search_condition is any value expression (see Section 4.2) that returns a value of type boolean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(i.e., if the result is false or null) it is discarded.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE c1 > 5

SELECT ... FROM fdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT c1 FROM t2)

SELECT ... FROM fdt WHERE c1 IN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 + 10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 + 10) AND 100

SELECT ... FROM fdt WHERE EXISTS (SELECT c1 FROM t2 WHERE c2 > fdt.c1)

fdt is the table derived in the FROM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from fdt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced in
the subqueries. Qualifying c1 as fdt.c1 is only necessary if c1 is also the name of a column in the derived

RapidsDB Release 4.3.3 User Guide Page 58 © Borrui Data Technology Co. Ltd 2022

input table of the subquery. But qualifying the column name adds clarity even when it is not required.
This example shows how the column naming scope of an outer query extends into its inner queries.

6.2.3 GROUP BY and HAVING Clause
After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP
BY clause, and elimination of group rows using the HAVING clause.

SELECT select_list
 FROM ...
 [WHERE ...]
 GROUP BY exprList

The GROUP BY Clause is used to group together those rows in a table that have the same values in all
the columns listed. The order in which the columns are listed does not matter. The effect is to combine
each set of rows having common values into one group row that represents all rows in the group. This is
done to eliminate redundancy in the output and/or compute aggregates that apply to these groups.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING clause
can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Examples:

SELECT x, sum(y) FROM test1 GROUP BY x HAVING sum(y) > 3;

SELECT x, sum(y) FROM test1 GROUP BY x HAVING x < 'c';

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
 FROM products p LEFT JOIN sales s USING (product_id)
 WHERE s.date > '2015-06-01 00:00:00' AND s.date < '2015-07-01 00:00:00'
 GROUP BY product_id, p.name, p.price, p.cost
 HAVING sum(p.price * s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the
expression is only true for sales during the month of June), while the HAVING clause restricts the output
to groups with total gross sales over 5000. Note that the aggregate expressions do not necessarily need
to be the same in all parts of the query.

RapidsDB Release 4.3.3 User Guide Page 59 © Borrui Data Technology Co. Ltd 2022

6.3 SELECT Lists
As shown in the previous section, the table expression in the SELECT command constructs an
intermediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table
is finally passed on to processing by the select list. The select list determines which columns of the
intermediate table are include in the result.

6.3.1 SELECT List Items
The simplest kind of select list is * which emits all columns that the table expression produces.
Otherwise, a select list is a comma-separated list of value expressions (as defined in Section 4.2). For
instance, it could be a list of column names:

SELECT a, b, c FROM ...

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 6.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same as
in the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:

SELECT tbl1.a, tbl2.a, tbl1.b FROM ...

When working with multiple tables, it can also be useful to ask for all the columns of a particular table:

SELECT tbl1.*, tbl2.a FROM ...

(See also Section 5.2.2.)

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to the
returned table. The value expression is evaluated once for each result row, with the row's values
substituted for any column references. But the expressions in the select list do not have to reference
any columns in the table expression of the FROM clause; they can be constant arithmetic expressions,
for instance.

6.3.2 Column Labels
The entries in the select list can be assigned names for subsequent processing, such as for use in an
ORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + c AS sum FROM ...

If no output column name is specified using AS, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For complex expressions, the system will
generate a generic name.

RapidsDB Release 4.3.3 User Guide Page 60 © Borrui Data Technology Co. Ltd 2022

6.3.3 DISTINCT
After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DISTINCT keyword is written directly after SELECT to specify this:

SELECT DISTINCT select_list ...

(Instead of DISTINCT the keyword ALL can be used to specify the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

6.4 Combining Queries (UNION, INTERSECT, EXCEPT)

6.4.1 UNION
The results of two queries can be combined using the UNION set operation. The syntax is

query1 UNION [ALL] query2

query1 and query2 are queries that can use any of the features discussed up to this point. Set
operations can also be nested and chained, for example

query1 UNION query2 UNION query3

which is executed as:

(query1 UNION query2) UNION query3

UNION effectively appends the result of query2 to the result of query1 (although there is no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows
from its result, in the same way as DISTINCT, unless UNION ALL is used.

RapidsDB Release 4.3.3 User Guide Page 61 © Borrui Data Technology Co. Ltd 2022

In order to calculate the union of two queries, the two queries must be "union compatible", which
means that they return the same number of columns and the corresponding columns have compatible
data types. Also, any LIMIT or ORDER BY clause can only appear at the end of statement.

6.4.2 INTERSECT
INTERSECT returns any distinct values that are returned by both the query on the left and right sides of
the INTERSECT operator.

The syntax is

query1 INTERSECT query2

RapidsDB Release 4.3.3 User Guide Page 62 © Borrui Data Technology Co. Ltd 2022

query1 and query2 are queries that can use any of the features discussed up to this point. Set
operations can also be nested and chained, for example

query1 INTESECT query2 INTERSECT query3

which is executed as:

(query1 INSERSECT query2) INTERSECT query3

In order to calculate the intersect of two queries, the two queries must be "intersect compatible", which
means that they return the same number of columns and the corresponding columns have compatible
data types.

6.4.3 EXCEPT
EXCEPT returns any distinct values from the query left of the EXCEPT operator. Those values return as
long the right query doesn't return those values as well.

The syntax is

query1 EXCEPT query2

query1 and query2 are queries that can use any of the features discussed up to this point. Set
operations can also be nested and chained, for example

query1 EXCEPT query2 EXCEPT query3

RapidsDB Release 4.3.3 User Guide Page 63 © Borrui Data Technology Co. Ltd 2022

which is executed as:

(query1 EXCEPT query2) EXCEPT query3

In order to calculate the except of two queries, the two queries must be "except compatible", which
means that they return the same number of columns and the corresponding columns have compatible
data types. Also, any LIMIT or ORDER BY clause can only appear at the end of statement.

6.5 ORDER BY
After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in
that case will depend on the scan and join plan types, but it must not be relied on. A particular output
ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT select_list
 FROM table_expression
 ORDER BY orderByList [ASC | DESC]

The orderByList can be any expression that would be valid in the query's select list. An example is:

SELECT a, b FROM table1 ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal
according to the earlier values. Each expression can be followed by an optional ASC or DESC keyword to

RapidsDB Release 4.3.3 User Guide Page 64 © Borrui Data Technology Co. Ltd 2022

set the sort direction to ascending or descending. ASC order is the default. Ascending order puts smaller
values first, where "smaller" is defined in terms of the < operator. Similarly, descending order is
determined with the > operator.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC, y DESC.

A sort_expression can also be the column label or number of an output column, as in:

SELECT a + b AS sum, c FROM table1 ORDER BY sum;

SELECT a, max(b) FROM table1 GROUP BY a ORDER BY 1;

both of which sort by the first output column.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this case it
is only permitted to sort by output column names or numbers, not by expressions.

6.6 LIMIT and OFFSET
LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the
query:

SELECT select_list
 FROM table_expression
 [ORDER BY ...]
 [LIMIT { number }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query
itself yields less rows).

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as omitting
the OFFSET clause. If both OFFSET and LIMIT appear, then OFFSET rows are skipped before starting to
count the LIMIT rows that are returned.

When using LIMIT or OFFSET, it is important to use an ORDER BY clause that constrains the result rows
into a unique order. Otherwise you will get an unpredictable subset of the query's rows. You might be
asking for the tenth through twentieth rows, but tenth through twentieth in what ordering? The
ordering is unknown, unless you specified ORDER BY.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

6.7 WITH (Common Table Expressions)
WITH provides a way to write auxiliary statements for use in a larger query. These statements are often
referred to as Common Table Expressions or CTEs.

RapidsDB Release 4.3.3 User Guide Page 65 © Borrui Data Technology Co. Ltd 2022

Key characteristics of CTEs:

• RapidsDB supports only non-recursive CTEs.
• The column_list is optional, and when specified, the columns of CTE will be known by the names

specified and the column names or aliases of the underlying query are not visible when referring
to the CTE. In the example below, the column names in the CTE are x, y and z whereas the
column names in the underlying query are a,b and c. (Note that the original names are still used
normally within the underlying query itself, e.g. in the WHERE clause in the example below):

WITH cte_1(x, y, z) AS (SELECT a, b, c FROM t WHERE a < 5) SELECT x FROM cte_1;
• When the CTE is referenced in a SELECT statement, the CTE will be merged into the query and

executed as part of the query. If there are multiple references to the same CTE, each reference
to the CTE will be executed. In a future release, references to the CTE will be optimized to avoid
unnecessary computation.

• If a CTE defined in the WITH clause is not referenced in the SELECT statement, it has no effect on
the execution of the query.

Example:

RapidsDB Release 4.3.3 User Guide Page 66 © Borrui Data Technology Co. Ltd 2022

7 Functions and Operators

7.1 Logical Operators
The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued logic system with true, false, and null, which represents "unknown". Observe
the following truth tables:

a b a AND b a OR b
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL

a NOT a
TRUE FALSE
FALSE TRUE
NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operand without
affecting the result.

7.2 Comparison Operators and BETWEEN
The usual comparison operators are available:

Operator Description

< less than

> greater than

<= less than or equal to

>= greater than or equal to

= equal

RapidsDB Release 4.3.3 User Guide Page 67 © Borrui Data Technology Co. Ltd 2022

<> or != not equal

Comparison operators are available for all relevant data types. All comparison operators are binary
operators that return values of type Boolean.

In addition to the comparison operators, the special BETWEEN construct is available:

a BETWEEN x AND y

is equivalent to

a >= x AND a <= y

Notice that BETWEEN treats the endpoint values as included in the range. NOT BETWEEN does the
opposite comparison:

a NOT BETWEEN x AND y

is equivalent to

a < x OR a > y

To check whether a value is or is not null, use the constructs:

expression IS NULL

expression IS NOT NULL

Do not write expression = NULL because NULL is not "equal to" NULL. (The null value represents an
unknown value, and it is not known whether two unknown values are equal.) This behavior conforms to
the SQL standard.

7.3 Mathematical Operators and Functions
Mathematical Operators

Operator Description Example Result

+ addition 2 + 3 5

- subtraction 2 - 3 -1

* multiplication 2 * 3 6

/ division (integer
division truncates the
result)

4 / 2 2

RapidsDB Release 4.3.3 User Guide Page 68 © Borrui Data Technology Co. Ltd 2022

% modulo (remainder) 5 % 4 1

Mathematical Functions

Function Return
Type

Description Example Result

abs(x) (same as
input)

absolute value abs(-17.4) 17.4

ceil(numeric) integer smallest integer
not less than
argument

ceil(-42.8) -42

ceiling(numeric) integer smallest integer
not less than
argument (alias
for ceil)

ceiling(-95.3) -95

floor(numeric) integer largest integer
not greater than
argument

floor(-42.8) -43

mod(numeric, numeric) float returns the
remainder of
the first
argument
divided by the
second
argument

mod(1.25, 0.5) 0.25

power(numeric, numeric) float raise first
argument to the
power of the
second
argument

power(9, 2) 81.0

round(numeric) integer round to
nearest integer

round(123.99) 123

RapidsDB Release 4.3.3 User Guide Page 69 © Borrui Data Technology Co. Ltd 2022

round(numeric, int) float round to int
number of
decimal places

round((123.999,2) 123.99

sqrt(numeric) float square root of
argument

sqrt(10) 3.1622776985168457

stddev(expression) float historical alias
for
stddev_samp

stddev_pop(expression) float population
standard
deviation of the
input values

stddev_samp(expression) float sample standard
deviation of the
input values

variance(expression) float historical alias
for var_samp

var_pop(expression) float population
variance of the
input values
(square of the
population
standard
deviation)

var_samp(expression) float sample variance
of the input
values (square
of the sample
standard
deviation)

7.4 String Functions and Operators

RapidsDB Release 4.3.3 User Guide Page 70 © Borrui Data Technology Co. Ltd 2022

Function Return
Type

Description Example Result

concat(string, string) text String
concatentation

'Post' || 'greSQL' 'PostgreSQL'

concat(string, numeric)

concat (numeric,string)

text String
concatentation

concat('Value: ', 3.1)

concat(3.1, ' times')

'Value: 3.1'

'3.1 times'

string || string text String
concatenation

'Post' || 'greSQL' 'PostgreSQL'

string || numeric text String
concatenation

'Value: ' || 3.1 'Value: 3.1'

string + string text String
concatenation

'Post' + 'greSQL' 'PostgreSQL'

string + numeric text String
concatenation

'Value: ' + 3.1 'Value: 3.1'

char_length(string) int Number of
characters in
string

char_length('jose') 4

lower(string) text Convert string
to lower case

lower('TOM') 'tom'

position(substring in
string)

int Location of
specified
substring

position('om' in
'Thomas')

3

repeat(string, int) text Repeat the
specified string
for the
specified
number of
times.

repeat('Post',2) 'PostPost'

substring(string from int
[for int])

text Extract
substring
starting at the
“from”
position, for

substring('Thomas'
from 2 for 3)

'hom'

RapidsDB Release 4.3.3 User Guide Page 71 © Borrui Data Technology Co. Ltd 2022

the length
specified by the
“for” (defaults
to rest of
string)

substring(‘Thomas’
from 2)

'homas'

substring(string from
negative int [for int])

text Extract
substring
starting at the
“from” position
counting
backwards
from the right
of the string for
the length
specified by the
“for” (defaults
to rest of
string)

Substring(‘Thomas’
from -3 for 3)

'mas'

trim([leading | trailing |
both] [character] from
string)

text Remove the
longest string
containing only
the specified
character (a
space by
default) from
the
start/end/both
ends of the
string

trim(both 'x' from
'xTomxx')

'Tom'

ltrim(string [,character]) text Remove the
longest string
containing only
the specified
character (a
space by
default) from
the start of the
string

ltrim(‘ Tom’)

ltrim(‘aaTom’,’a’)

'Tom'

'Tom'

RapidsDB Release 4.3.3 User Guide Page 72 © Borrui Data Technology Co. Ltd 2022

rtrim(string [,character]) text Remove the
longest string
containing only
the specified
character (a
space by
default) from
the end of the
string

rtrim(‘Tom ’)

rtrim(‘Tomaa’,’a’)

'Tom'

'Tom'

upper(string) text Convert string
to upper case

upper('tom') 'TOM'

left(str text, n int) text Return first n
characters in
the string.
When n is
negative an
empty string
will be
returned.

left('Tomas',2) 'To'

right(str text, n int) text Return last n
characters in
the string.
When n is
negative an
empty string
will be
returned.

right('Tomas',2) 'as'

7.5 Pattern Matching – LIKE
 {string-expression} LIKE '{pattern}' [ESCAPE ‘escape-character’]

The LIKE expression returns true if the string-expression matches the supplied pattern. (As expected, the
NOT LIKE expression returns false if LIKE returns true, and vice versa.)

If pattern does not contain percent signs or underscores, then the pattern only represents the string
itself; in that case LIKE acts like the equals operator. An underscore (_) in pattern stands for (matches)
any single character; a percent sign (%) matches any sequence of zero or more characters.

Some examples:

RapidsDB Release 4.3.3 User Guide Page 73 © Borrui Data Technology Co. Ltd 2022

'abc' LIKE 'abc' true
'abc' LIKE 'a%' true
'abc' LIKE '_b_' true
'abc' LIKE 'c' false

LIKE pattern matching always covers the entire string. Therefore, if it's desired to match a sequence
anywhere within a string, the pattern must start and end with a percent sign.

To match a literal underscore or percent sign the user must specify an escape character to be used as
part of the pattern string by adding the ESCAPE clause after the pattern string. The respective character
in the pattern must be preceded then by the escape character.

Some examples:

'a_b' LIKE 'a_%' ESCAPE ‘\’ true
'abc' LIKE 'a_%' ESCAPE ‘\’ false

7.6 Date/Time Functions

7.6.1 EXTRACT(from timestamp)
EXTRACT(selection-keyword FROM timestamp-expression)

The EXTRACT() function returns the value of the selected portion of a timestamp. The table below lists
the supported keywords, the datatype of the value returned by the function, and a description of its
contents.

Keyword Datatype Description

YEAR INTEGER The year as a numeric value.

QUARTER INTEGER The quarter of the year as a single numeric value between 1 and 4.

MONTH INTEGER The month of the year as a numeric value between 1 and 12.

DAY INTEGER The day of the month as a numeric value between 1 and 31.

WEEK INTEGER The week of the year as a numeric value between 1 and 52.

HOUR INTEGER The hour of the day as a numeric value between 0 and 23.

RapidsDB Release 4.3.3 User Guide Page 74 © Borrui Data Technology Co. Ltd 2022

Keyword Datatype Description

MINUTE INTEGER The minute of the hour as a numeric value between 0 and 59.

SECOND INTEGER
The whole part of the number of seconds within the minute as a value between
0 and 59.

rapids > select * from t3;
C1
--
2021-08-19 09:01:02.12

1 row(s) returned (0.06 sec)
rapids > select extract(second from c1) from t3;
 [1]

 2

1 row(s) returned (0.02 sec)

7.6.2 CURRENT_TIMESTAMP
 CURRENT_TIMESTAMP

Returns the current date and time as a timestamp

7.6.3 NOW()
 NOW()

Returns the current date and time as a timestamp. Equivalent to CURRENT_TIMESTAMP.

RapidsDB Release 4.3.3 User Guide Page 75 © Borrui Data Technology Co. Ltd 2022

7.6.4 Interval Arithmetic

7.6.4.1 Interval Types
RapidsDB provides support for INTERVAL arithmetic as defined by the SQL-99 standard. There are two
types of intervals:

YEAR-MONTH INTERVAL
Examples:

• INTERVAL '1' YEAR
• INTERVAL '2' MONTH
• INTERVAL '1-2' YEAR TO MONTH

DAY_TIME INTERVAL

Examples:
• INTERVAL '5' DAY
• INTERVAL '5 10:10' DAY TO MINUTE
• INTERVAL '1 2:10:10.234' DAY TO SECOND

and so on...

Precision:
The user can specify a leading precision for any of the intervals. The default precision for all of DAY,
HOUR, MINUTE, SECOND, YEAR, MONTH is 2. The maximum precision allowed is 9. The default
fractional second precision is 6, and the maximum is 9. You can specify precision for the leading field
and also for the SECOND field, the remaining fields will follow the default precision.

The following are valid intervals:

• INTERVAL '1-2' YEAR TO MONTH
• INTERVAL '13-2' YEAR TO MONTH
• INTERVAL '199-2' YEAR(3) TO MONTH
• INTERVAL '199' MONTH(3) ---- NOTE: we have to specify the precision of three because the

value 199 is greater than the default precision
• INTERVAL '1 10:10:10.234' DAY TO SECOND
• INTERVAL '123 10:10:10.234' DAY(3) TO SECOND ---- NOTE: we have to specify the precision of

three because the value 123 is greater than the default precision
• INTERVAL '123 10:10:10.12345678' DAY(3) TO SECOND(8) ---- NOTE: we have to specify the

precision of three because the value 123 for the DAY is greater than the default precision, and
the precision for SECOND is also greater than the default

• INTERVAL '123 10:10:10.12345678' DAY(3) TO SECOND : the fractional second will round off to
the default 6 digits precision, and you will get back: +123 10:10:10.123457 NOTE: we have to

RapidsDB Release 4.3.3 User Guide Page 76 © Borrui Data Technology Co. Ltd 2022

specify the precision of three because the value 123 for the DAY is greater than the default
precision

Range:
Can be negative or positive.

7.6.4.2 YEAR-MONTH interval:
Can be negative or positive:

year - constrained by precision. Hence with a precision of 9 the maximum value can be 999999999
month - 0 to 11 (But if leading then constrained by precision).

The following example is valid:
INTERVAL '10-10' YEAR TO MONTH.

but the following is invalid:
INTERVAL '10-13' YEAR TO MONTH.

The following is also valid:
INTERVAL '13' MONTH
This is valid because MONTH is the leading number, and so it is constrained by precision, and the leading
default precision is 2. So you can have a max value of 99 in month. But if you specify precision of more
than 2 it can be higher.
For example, you can have:

INTERVAL '999' MONTH(3)

7.6.4.3 DAY-TIME interval:
Can be negative or positive:

day - constrained by precision. Hence with a precision of 9, the maximum value can be 999999999
hour - 0 to 23
minute - 0 to 59
second - 0 to 59.999999999

Note that if hour, minute or second are leading then we can specify a precision other than the default
for them.
e.g INTERVAL '999' HOUR(3)

Also note that we can give a fractional second precision:
e.g INTERVAL '10:20.30.888' HOUR TO SECOND(3).

We can also have:
INTERVAL '10.89' SECOND(2,2)

Also note that with the fractional second, if the number does not fit the precision, it will get rounded.

RapidsDB Release 4.3.3 User Guide Page 77 © Borrui Data Technology Co. Ltd 2022

e.g INTERVAL '10.23456' SECOND(2,4)
will become '+10.2346'

Support for interval comparisons:
We can compare DATE-TIME intervals with DATE-TIME intervals.
We can compare YEAR-MONTH intervals with YEAR-MONTH intervals.

7.6.4.4 Support for Interval Arithmetic:
Operand Operator Operand Result Type

Timestamp - Timestamp Interval

Timestamp + Interval Timestamp

Timestamp - Interval Timestamp

Interval + Timestamp Timestamp

Interval + Interval Interval

Interval - Interval Interval

Interval * Numeric Interval

Numeric * Interval Interval

Interval / Numeric Interval

Notes:

1. When you do arithmetic on intervals, the resulting interval has a precision of the maximum
allowed (see examples below).

2. When doing interval arithmetic with a timestamp literal, the timestamp literal must be specified
using the timestamp keyword (see examples below)

Examples:

In the following examples, the table t1 has column c2 defined as a timestamp column:

rapids > create table moxe.t1(c1 integer,c2 timestamp);
0 row(s) returned (0.10 sec)
rapids > insert into t1 values(1,'2018-11-12 10:12:13'),(2,'2019-12-08
09:11:30'),(3,'2017-01-01 06:12:50');
0 row(s) returned (0.09 sec)
rapids > select c2-interval '100' HOUR(3) from t1;

RapidsDB Release 4.3.3 User Guide Page 78 © Borrui Data Technology Co. Ltd 2022

[1]

2018-11-08 06:12:13.0
2019-12-04 05:11:30.0
2016-12-28 02:12:50.0

3 row(s) returned (0.05 sec)
rapids > select c2-'2018-01-01' from t1;
 [1]

 315
 706
 -365

3 row(s) returned (0.05 sec)
rapids > select timestamp '2018-01-01 01:01:01' -interval '100'
HOUR(3) from t1 limit 1;
[1]

2017-12-27 21:01:01.0

1 row(s) returned (0.05 sec)

7.6.4.5 EXTRACT(from interval)
EXTRACT(selection-keyword FROM interval-expression)

The EXTRACT() function returns the value of the selected portion of a timestamp. The table below lists
the supported keywords, the datatype of the value returned by the function, and a description of its
contents.

Keyword From Interval Datatype Description

YEAR Year-month INTEGER The year as a numeric value.

QUARTER Year-month INTEGER The quarter as a numeric value.

MONTH Year-month INTEGER The month as a numeric value

DAY Day-time INTEGER The day as a numeric value

HOUR Day-time INTEGER The hour as a numeric value.

RapidsDB Release 4.3.3 User Guide Page 79 © Borrui Data Technology Co. Ltd 2022

Keyword From Interval Datatype Description

MINUTE Day-time INTEGER The minute as a numeric value.

SECOND Day-time INTEGER The second as a numeric value.

7.6.4.6 BETWEEN Operator:
 BETWEEN interval1 AND interval2
The BETWEEN operator can return the value between two day-time or two year-month intervals. For
example:
SELECT …. WHERE TS_INTERVAL BETWEEN INTERVAL '100 10:00:00.000 DAY TO SECOND AND INTERVAL
'299 10:00:00.000' DAY TO SECOND …

7.7 CONDITIONAL EXPRESSIONS

7.7.1 CASE
The CASE expression is a generic conditional expression, similar to if/else statements in other
programming languages:

CASE WHEN condition THEN result

RapidsDB Release 4.3.3 User Guide Page 80 © Borrui Data Technology Co. Ltd 2022

 [WHEN ...]
 [ELSE result]
END

CASE clauses can be used wherever an expression is valid. Each condition is an expression that returns a
boolean result. If the condition's result is true, the value of the CASE expression is the result that follows
the condition, and the remainder of the CASE expression is not processed. If the condition's result is not
true, any subsequent WHEN clauses are examined in the same manner. If no WHEN condition yields
true, the value of the CASE expression is the result of the ELSE clause. If the ELSE clause is omitted and
no condition is true, the result is null.

An example:

7.7.2 COALESCE
COALESCE(value [, ...])

The COALESCE function returns the first of its arguments that is not null. Null is returned only if all
arguments are null. It is often used to substitute a default value for null values when data is retrieved for
display, for example:

SELECT COALESCE(description, short_description, '(none)') ...

This returns description if it is not null, otherwise short_description if it is not null, otherwise the text
‘(none)’.

7.7.3 IF
 IF(boolean_expression, true_result_expression, false_result_expression)

RapidsDB Release 4.3.3 User Guide Page 81 © Borrui Data Technology Co. Ltd 2022

IF evaluates the boolean_expression, and then evaluates one of the other two expressions to produce a
result. If the boolean_expression is true, then the true_result_expression is evaluated and returned as
the result; otherwise the false_result_expression is evaluated and returned as the result.

true_result_expression and false_result_expression may be of any type but the two must match or be
implicitly convertible to a common type.

Example:

SELECT IF(1<2, 2, 3) …

This returns the value 3.

7.7.4 IFNULL
 IFNULL(value1, value2)

The IFNULL function returns value2 if value1 is null; otherwise it returns value1, for example.

SELECT IFNULL(description, ‘(none)’) …

This returns the string ‘(none)’ if the value for the description column is null, otherwise it returns the
value for the column .

7.7.5 NULLIF
 NULLIF(value1, value2)

The NULLIF function returns a null value if value1 equals value2; otherwise it returns value1, for
example.

SELECT NULLIF(description, ‘(none)’) …

This returns a null value if the value for the description column equals ‘(none)’ otherwise it returns the
value for the description column.

7.8 AGGREGATE FUNCTIONS
Aggregate functions compute a single result from a set of input values.

Function Argument Type(s) Return Type Description

avg(expression) integer, decimal or
float

double precision for a
floating-point
argument, otherwise
same as the argument
data type

the average (arithmetic
mean) of all input
values

count(*) integer number of input rows

RapidsDB Release 4.3.3 User Guide Page 82 © Borrui Data Technology Co. Ltd 2022

count(expression) any integer number of input rows
for which the value of
expression is not null

max(expression) any numeric, string, or
date/time types

same as argument type maximum value of
expression across all
input values

min(expression) any numeric, string, or
date/time types

same as argument type minimum value of
expression across all
input values

sum(expression) Integer, decimal or
float types

same as the argument
data type

sum of expression
across all input values

It should be noted that except for count, these functions return a null value when no rows are selected.
In particular, sum of no rows returns null, not zero as one might expect. The COALESCE function can be
used to substitute zero or an empty array for null when necessary.

7.9 SUB-QUERY EXPRESSIONS

7.9.1 IN
expression IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of IN is "true" if
any equal subquery row is found. The result is "false" if no equal row is found (including the case where
the subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand row yields null, the result of the IN construct will be null, not false.

RapidsDB Release 4.3.3 User Guide Page 83 © Borrui Data Technology Co. Ltd 2022

7.9.2 NOT IN
expression NOT IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of NOT IN is "true"
if only unequal subquery rows are found (including the case where the subquery returns no rows). The
result is "false" if any equal row is found.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand row yields null, the result of the NOT IN construct will be null, not true.

7.9.3 EXISTS
 EXISTS (subquery)

The argument of EXISTS is an arbitrary SELECT statement, or subquery. The subquery is evaluated to
determine whether it returns any rows. If it returns at least one row, the result of EXISTS is "true"; if the
subquery returns no rows, the result of EXISTS is "false".

RapidsDB Release 4.3.3 User Guide Page 84 © Borrui Data Technology Co. Ltd 2022

7.10 Session Functions

7.10.1 CURRENT_USER
The CURRENT_USER keyword can be used in a SELECT list to return the username of the current session.

rapids > select current_user from rapids.system.tables limit 1;
[1]

RAPIDS

1 row(s) returned (0.05 sec)

7.10.2 CURRENT_CATALOG
The CURRENT_CATALOG keyword can be used in a SELECT list to return the name of the catalog that will
be used for resolving table or object names that are not fully qualified. If a default catalog has not been
set then this keyword will return NULL.

rapids > set catalog moxe;
rapids > select current_catalog from rapids.system.tables limit 1;
[1]

MOXE

1 row(s) returned (0.05 sec)

RapidsDB Release 4.3.3 User Guide Page 85 © Borrui Data Technology Co. Ltd 2022

7.10.3 CURRENT_SCHEMA
The CURRENT_SCHEMA keyword can be used in a SELECT list to return the name of the schema that will
be used for resolving table or object names that are not fully qualified. If a default schema has not been
set then this keyword will return NULL.

rapids > set schema moxe;
rapids > select current_schema from rapids.system.tables limit 1;
[1]

MOXE

1 row(s) returned (0.02 sec)

7.11 VERSION()
The VERSION function returns version information about the RapidsDB software. There are three
supported variations of the VERSION function:

1. VERSION() – returns version number and build date for the RapidsDB Software, the version of
Linux and the Java version:
rapids > select version();
[1]

RapidsDB 4.3.1 2022-01-20, Linux 5.4.0-74-generic, Java 1.8.0_292 (openj9-0.26.0)

1 row(s) returned (0.08 sec)

2. VERSION(1) – returns the version number for the RapidsD software:
rapids > select version(1);
[1]

4.3.1

1 row(s) returned (0.02 sec)

3. VERSION(2) – returns the internal software repository commit id for the RapidsDB software:
rapids > select version(2);
[1]

bbc91e81a65297e3b945484d3b669087cf11ef77

1 row(s) returned (0.06 sec)

RapidsDB Release 4.3.3 User Guide Page 86 © Borrui Data Technology Co. Ltd 2022

8 QUERY EXECUTION

8.1 RapidsDB SQL Statement Execution
RapidsDB will parse a SQL statement and build a query execution plan to execute the SQL statement.
When optimizing the execution plan the RapidsDB Optimizer attempts to “push down” as much of the
query logic as possible to the underlying Data Store using a minimum number of operations. Those
parts of the query logic that cannot be pushed down will be executed by the RapidsDB Execution Engine.
For example, when executing a JOIN that includes tables from two different Connectors, the join will
take place in the RapidsDB Execution Engine. EXPLAIN (see 15.1) can be used to see which parts of the
query will be executed in RapidsDB and to inspect the SQL statements that will be sent to the underlying
Data Store.

For those parts of a query that are executed by the RapidsDB Execution Engine, there are two types of
query plans which can be generated:

1. Partitioned Query Plans (see 8.2)
2. Non-Partitioned Query Plans (see 8.3)

NOTE: It is important to understand that Partitioned and Non-Partitioned Query Plans only apply to
those parts of the query plan that cannot be pushed down to the underlying data stores, where the
RapidsDB Execution Engine will be executing that part of the query plan. For queries that can be
pushed down to the underlying data store, it is the responsibility of the underlying data store to
parallelize the query execution where possible.

8.2 Partitioned Query Plans
MOXE and the Hadoop Connector support partitioning of the data across nodes in the RapidsDB cluster,
which allows a query to be executed in parallel against each of the partitions of the tables being queried.
For MOXE and the Hadoop Connector, RapidsDB will generate a Partitioned Query Plan, where portions
of the query plan will be executed in the RapidsDB Execution Engine in parallel against each partition of
a table. Figure 10 below illustrates this:

RapidsDB Release 4.3.3 User Guide Page 87 © Borrui Data Technology Co. Ltd 2022

RapidsDB Release 4.3.3 User Guide Page 88 © Borrui Data Technology Co. Ltd 2022

Figure 10. Partitioned Query Plan

In this example there is a join between the Supplier and Nation tables. The Supplier table is a
partitioned table that is distributed across two nodes, and the Nation table is a replicated table with a
copy of the table on each node. Each node will perform a parallel join between the partitions of the
Supplier table and the Nation table, and then the results will be merged on the originating node for the
query, which is Node1 in this example.

8.3 Non-Partitioned Query Plans
For other data stores where a single query cannot be split up and executed in parallel, RapidsDB will
generate a Non-Partitioned Query plan, sending a single query to the underlying data store. It will be
responsibility of the underlying data store to parallelize the execution of the query if possible. MemSQL
is an example of a Data Store where the query cannot be split up by RapidsDB and executed in parallel,
but MemSQL can the parallelize the execution of a SQL statement when it is pushed down to MemSQL.
Figure 11 below illustrates this:

Example: select l_orderkey, l_partkey, p_mfgr from part join lineitem on p_partkey = l_partkey and
p_mfgr = 'LG';

RapidsDB Release 4.3.3 User Guide Page 89 © Borrui Data Technology Co. Ltd 2022

Figure 11. Non-partitioned Query Plan

Figure 11 shows the entire query getting pushed down to MemSQL (via the memSQL Aggregator) and
then MemSQL parallelizing the execution across all of the MemSQL Leaf nodes in the MemSQL cluster.

Other data stores, such as Oracle, which are not distributed data stores, will execute the query on a
single node. Figure 12 below shows the same query executed against Oracle:

RapidsDB Release 4.3.3 User Guide Page 90 © Borrui Data Technology Co. Ltd 2022

Figure 12 Non-partitioned query plan

8.4 Combination of Partitioned and Non-Partitioned Plans
When joining tables across Connectors where one Connector uses Partitioned plans and the other
Connector uses Non-Partitioned plans (eg. MOXE and MemSQL), the join will be executed by RapidsDB,
and RapidsDB will push down as much of the processing as possible before performing the join.

Example: select l_orderkey, l_partkey, p_mfgr from part join lineitem on p_partkey = l_partkey and
p_mfgr = 'LG' and l_shipdate <= '2020-01-01';

This is the same query as the examples above, but in this example the PART table is managed by MOXE
and the LINEITEM table is managed by Oracle.

RapidsDB Release 4.3.3 User Guide Page 91 © Borrui Data Technology Co. Ltd 2022

Figure 13. Combination of Partitioned and Non-Partitioned Plans

Figure 13 shows that the data from the PART table will be retrieved from MOXE in parallel using a
Partitioned plan, and the data from the LINEITEM table will be retrieved from Oracle using a Non-
Partitioned plan. The steps of the plan will be:

1 Execute a partitioned fetch from MOXE against the PART table, and apply a filter to the
data (p_mfgr=’LG’)

2 Build a set of Bloom filters using the data returned from the PART table for each partition
3 Execute a non-partitioned fetch from Oracle against the LINEITEM table with the predicate

l_shipdate<=’2020-01-01’
4 Send the bloom filters to the node with the LINEITEM data and join the resulting rows with

the rows returned from the PART table
5 The DQC will merge the results from the two nodes doing the Bloom joins and then return

the results to the user

RapidsDB Release 4.3.3 User Guide Page 92 © Borrui Data Technology Co. Ltd 2022

8.5 RapidsDB Join Algorithms
To reduce network data movement, RapidsDB automatically distributes join operations based on the
network location(s) of the data.

The RapidsDB join optimizer analyzes available information about the size and location of the join
operands (the tables or subqueries participating in the join) and plans the join operation with the goal of
minimizing network cost by executing it co-locally with the data. If one or both operands are distributed
across multiple network nodes, RapidsDB partitions the join operation and executes join operators on
multiple nodes in parallel.

For equi-joins (i.e. where the join predicate contains at least one equality condition between the two
operands) RapidsDB uses a hash join algorithm. The join operator(s) ingest the rows of one operand and
build a hash index of the join keys for those rows. The operator then streams the rows of the other
operand, looking up each row’s join key in the index to determine whether it can satisfy the join
predicate.

If the operands of an equi-join operator are not co-located, data must be streamed over the network. In
this case a Bloom filter is dynamically created and sent to the location(s) from which data will be
streamed. A Bloom filter is effectively a much smaller (but also less accurate) hash index that yields a
simple yes/no answer as to whether a given row can potentially participate in the join. Candidate rows
are skipped if they don’t satisfy the filter, eliminating the need to send those rows over the network to
be tested against the join predicate. Although a Bloom filter is not perfectly accurate (it will allow a few
unqualified rows to pass), it nonetheless reduces network transmission significantly in most cases,
resulting in significantly higher join performance.

For non equi-joins RapidsDB performs a distributed cross-join. To reduce network cost, the optimizer
tries to plan the query such that the join operator(s) will run co-locally with the larger operand. Rows of
the other operand are broadcast (if they are not co-located) and the join operator(s) apply the join
predicate to every possible row combination to find combinations that satisfy the predicate. Testing all
combinations can be quite time consuming, so joins of this type are not advisable if the operands have a
large number of rows.

9 INSERT
The user can insert data into tables in the schema managed by the following Connectors:

• MOXE
• MySQL
• MemSQL
• Oracle
• Postgres
• Greenplum
• Hadoop

RapidsDB Release 4.3.3 User Guide Page 93 © Borrui Data Technology Co. Ltd 2022

• JDBC

The syntax for the INSERT command is:

INSERT INTO [catalog.][schema.]<table name> [(col_name,...)]
 VALUES (expr,...),(...),...

INSERT INTO [catalog.][schema.]<table name> [(col_name,...)]
 SELECT select-query
 col_name = insert_expr
 [, col_name = insert_expr] ...]

 select-query: any valid select query as defined by section 6

NOTES:

1. The catalog and schema names are used to identify which Connector the INSERT command
should be sent to. The catalog name is only needed in the situation where the schema name is
not unique.

2. For an INSERT … SELECT, the data types in the result set from the SELECT must be compatible
with the data types for the target insert table.

3. FOR INSERT … SELECT the tables specified in the INSERT and SELECT clauses can be in different
schema managed by different Connectors.

Example:

• INSERT INTO test.t1 VALUES (1,’test text’, '2015-01-01 00:00:00');

The INSERT would be sent to the Connector managing the schema named test to insert data into
table t1

• INSERT INTO test.t1 VALUES (1,’test text’, '2016-01-01 00:00:00'),(2,’text’, ‘2016-02-01
12:00:00’);

The INSERT for two rows would be sent to the Connector managing the schema named test to
insert data into table t1

• INSERT INTO mysql.test.t1 (c1,c2) VALUES (1,’test text’);

The INSERT would be sent to the MySQL Connector managing the schema named test to insert
data into table t1 for columns c1 and c2, with default values for any other columns in table t1.

• INSERT INTO moxe.t1 SELECT t1, t2, t3 FROM memsql.test.t2;

The INSERT would be sent to the MOXE Connector.

RapidsDB Release 4.3.3 User Guide Page 94 © Borrui Data Technology Co. Ltd 2022

10 DDL
The user can create and drop tables in the schema managed by the following types of Connectors:

• MOXE
• MySQL
• MemSQL
• Oracle
• Postgres
• Greenplum
• JDBC
• Hadoop (when used with the Hive metastore)

10.1 CREATE TABLE
The syntax for the CREATE TABLE command is:

CREATE TABLE [IF NOT EXISTS] <tableReference>
(
 <columnDefinition>, ...
 <indexDefinition>, ...
)
[PARTITION [BY] (<expr>, ...)] [COMMENT <string>]

where:

<tableReference> is:
 [catalog.][schema.]<table name>

<column definition> is:
 <columnName> <type> [[NOT] NULL] [COMMENT <string>]

<type> is:
 INTEGER [(precision)] |
 DECIMAL [(scale[, precision])] |
 FLOAT |
 VARCHAR [(size)] |
 BOOLEAN |
 DATE |
 TIMESTAMP

<column name> is: <SQL identifier>

<indexDefinition> is:

RapidsDB Release 4.3.3 User Guide Page 95 © Borrui Data Technology Co. Ltd 2022

 INDEX <indexName> [ON] (<columnName>, ...)

NOTES:

1. The catalog and schema names are used to identify which Connector the CREATE TABLE
command should be sent to. The catalog name is only needed in the situation where the
schema name is not unique.

2. The column name must be a valid SQL identifier (see 5.1.1). If the column name is a reserved
word then it must be enclosed in double quotes, however, the target database may still reject a
quoted identifier for some reserved words. For example, Postgres will not accept “select” as a
quoted identifier for a column name.

3. After creating the table, the metadata for the associated Connector will be refreshed, and there
is no need to manually run the REFRESH command.

4. For the Integer, Float, Decimal, and VARCHAR data types the actual size, precision and scale of
the columns will be determined by the underlying data store and can be different from the value
specified by the user. The DESCRIBE TABLE command can be used to see the column
information, for example:

rapids > describe table region;

TABLE_NAME COLUMN_NAME DATA_TYPE ORDINAL IS_PARTITION_KEY IS_NULLABLE PRECISION
SCALE

---------- ----------- --------- ------- ---------------- ----------- --------- -

REGION R_REGIONKEY INTEGER 1 false false 10
0

REGION R_NAME VARCHAR 2 false false 25
NULL

REGION R_COMMENT VARCHAR 3 false false 152
NULL

3 row(s) returned (0.04 sec)

(refer to the Rapids-shell User Guide for more information on describe table)

The column information in the COLUMNS table in the RapidsDB System Metadata (see 13.9) for
the created table reflects the type, size, precision and scale of columns as reported by the
underlying data store and interpreted by RapidsDB. The following query can be used to see the
column information for the created table:

SELECT * FROM rapids.system.columns

RapidsDB Release 4.3.3 User Guide Page 96 © Borrui Data Technology Co. Ltd 2022

WHERE catalog_name = ‘<catalog name for new table>’ AND
schema_name = ‘<schema name for new table>’ AND
table_name =’ <name of new table>’;

The tables below show how the data types are handled across MOXE, MySQL, MemSQL,
Postgres (includes Greenplum) and Oracle when issuing a CREATE TABLE statement from the
rapids-shell:

MOXE

Data Type MOXE Data Type Comments

INTEGER INTEGER Precision=19

INTEGER(n) INTEGER Precision ignored and set to 19

FLOAT FLOAT 64-bit double precision

FLOAT(n) FLOAT 64-bit double precision

DECIMAL DECIMAL(19,0)

DECIMAL(p,s) DECIMAL(p,s) Maximum precision of 19

BOOLEAN BOOEAN

DATE DATE

TIMESTAMP TIMESTAMP Maximum of 6 digits precision for seconds

VARCHAR VARCHAR Defaults to maximum size of 65,536 bytes

VARCHAR(n) VARCHAR(n) The maximum size is 65,536 bytes.

MEMSQL

Data Type MemSQL Data Type Comments

INTEGER BIGINT Precision=19

INTEGER(n) BIGINT Precision=19

FLOAT DOUBLE Precision=22

RapidsDB Release 4.3.3 User Guide Page 97 © Borrui Data Technology Co. Ltd 2022

FLOAT(n) DOUBLE Precision=22

DECIMAL DECIMAL(19,0)

DECIMAL(p,s) DECIMAL(p,s) Max precision is 65, max scale is 30

BOOLEAN TINYINT(1)

DATE DATE

TIMESTAMP TIMESTAMP

VARCHAR VARCHAR Defaults to 255 characters

VARCHAR(n) VARCHAR(n) Max of 21,845

MYSQL

Data Type MemSQL Data Type Comments

INTEGER BIGINT Precision=19

INTEGER(n) BIGINT Precision=19

FLOAT DOUBLE Precision=22

FLOAT(n) DOUBLE Precision=22

DECIMAL DECIMAL(19,0)

DECIMAL(p,s) DECIMAL(p,s) Max precision is 65, max scale is 30

BOOLEAN TINYINT(1)

DATE DATE

TIMESTAMP TIMESTAMP

VARCHAR VARCHAR Defaults to 255 characters

VARCHAR(n) VARCHAR(n) Values in VARCHAR columns are variable-
length strings. The length can be specified
as a value from 0 to 65,535. The effective
maximum length of a VARCHAR is subject
to the maximum row size (65,535 bytes,
which is shared among all columns)

RapidsDB Release 4.3.3 User Guide Page 98 © Borrui Data Technology Co. Ltd 2022

Oracle

Data Type Oracle Data Type Comments

INTEGER INTEGER Precision=19

INTEGER(n) INTEGER Precision ignored and set to 19

FLOAT FLOAT 64-bit double precision

FLOAT(n) FLOAT 64-bit double precision

DECIMAL DECIMAL(19,0)

DECIMAL(p,s) DECIMAL(p,s) Maximum precision of 19

BOOLEAN BOOEAN

DATE DATE

TIMESTAMP TIMESTAMP Maximum of 6 digits precision for seconds

VARCHAR VARCHAR Defaults to maximum size of 65,536 bytes

VARCHAR(n) VARCHAR(n) The maximum size is 65,536 bytes.

Postgres

Data Type Postgres Data Type Comments

INTEGER BIGINT Precision=19

INTEGER(n) BIGINT Precision=19

FLOAT FLOAT Precision=53

FLOAT(n) FLOAT Precision=53

DECIMAL DECIMAL(38,12)

RapidsDB Release 4.3.3 User Guide Page 99 © Borrui Data Technology Co. Ltd 2022

DECIMAL(p,s) DECIMAL(38,12) Max precision is 65, max scale is 12.
Precision and scale are ignored and will
always be set to 38 and 12 respectively

BOOLEAN Not supported

DATE DATE

TIMESTAMP TIMESTAMP Maximum of 6 digits precision for
seconds

VARCHAR VARCHAR Defaults to maximum size of 65,536 bytes

VARCHAR(n) VARCHAR(n) The maximum size is 65,536 bytes.

Examples:

CREATE TABLE test.t1 (c1 integer not null, c2 varchar(64), c3 timestamp);

This command would be sent to the Connector managing the schema named “test” to create
the table “t1”

CREATE TABLE mysql.test.t1 (c1 integer not null comment 'first column', c2 varchar(64)
comment 'second column', c3 timestamp comment 'third column') comment 'test table';

This command would be sent to the Connector named “mysql” that is managing the schema
“test” to create the table “t1”, with comments on all of the columns as well as the table.

CREATE TABLE test.t1 (“YEAR” integer not null, c2 varchar(64), c3 timestamp);

This command would be sent to the Connector managing the schema named “test” to create
the table “t1” with the first column being named “YEAR”. This is an example of using a quoted
identifier for a column name that is a reserved word.

10.2 Creating MOXE Tables
MOXE supports two types of tables, partitioned tables (see 10.2.1) and reference tables (see 10.2.2) as
described below.

10.2.1 Partitioned Tables
A partitioned table is a table where the data is distributed across all of the nodes in the RapidsDB cluster
where the associated MOXE Connector is running, and the data is partitioned using the columns
specified by the “PARTITION [BY]” clause.

RapidsDB Release 4.3.3 User Guide Page 100 © Borrui Data Technology Co. Ltd 2022

The following example creates a partitioned MOXE table with the column s_suppkey as the partitioning
column:

rapids > create table moxe.SUPPLIER (
 > s_suppkey integer NOT NULL comment 'Supplier key',
 > s_name varchar(25),
 > s_address varchar(40),
 > s_nationkey integer,
 > s_phone varchar(15),
 > s_acctbal decimal(17,2),
 > s_comment varchar(101)
 >) PARTITION (s_suppkey) comment 'Supplier table';
0 row(s) returned (0.15 sec)

This table also has a comment on the column s_suppkey and a table level comment. The comments can
be seen by querying the RapidsDB COMMENTS and TABLES tables as shown below:

rapids > select * from tables where table_name='SUPPLIER';
CATALOG_NAME SCHEMA_NAME TABLE_NAME IS_PARTITIONED COMMENT
PROPERTIES
------------ ----------- ---------- -------------- -------

MOXE MOXE SUPPLIER true Supplier
table NULL

1 row(s) returned (0.07 sec)
rapids > select * from columns where table_name='SUPPLIER';
CATALOG_NAME SCHEMA_NAME TABLE_NAME COLUMN_NAME DATA_TYPE
ORDINAL IS_PARTITION_KEY IS_NULLABLE PRECISION PRECISION_RADIX
SCALE CHARACTER_SET COLLATION COMMENT PROPERTIES
------------ ----------- ---------- ----------- ---------
------- ---------------- ----------- --------- ---------------
----- ------------- --------- ------- ----------
MOXE MOXE SUPPLIER S_SUPPKEY INTEGER
0 true false 64 2
NULL NULL NULL Supplier key NULL
MOXE MOXE SUPPLIER S_NAME VARCHAR
1 false true NULL NULL
NULL UTF16 BINARY NULL NULL
MOXE MOXE SUPPLIER S_ADDRESS VARCHAR
2 false true NULL NULL
NULL UTF16 BINARY NULL NULL

RapidsDB Release 4.3.3 User Guide Page 101 © Borrui Data Technology Co. Ltd 2022

MOXE MOXE SUPPLIER S_NATIONKEY INTEGER
3 false true 64 2
NULL NULL NULL NULL NULL
MOXE MOXE SUPPLIER S_PHONE VARCHAR
4 false true NULL NULL
NULL UTF16 BINARY NULL NULL
MOXE MOXE SUPPLIER S_ACCTBAL DECIMAL
5 false true 17 10
2 NULL NULL NULL NULL
MOXE MOXE SUPPLIER S_COMMENT VARCHAR
6 false true NULL NULL
NULL UTF16 BINARY NULL NULL

7 row(s) returned (0.08 sec)

10.2.2 Reference Tables
Reference tables are tables that are replicated to each node in the RapidsDB cluster where the
associated MOXE Connector is running. Reference tables are typically used for small dimension tables
which can result in improved query performance when doing JOINs because the JOINs to the reference
tables can be completed locally on each node in the RapidsDB cluster avoiding any network overhead.

The following example creates a replicated table that will be replicated to every RapidsDB node in the
cluster:
rapids > create table MOXE.REGION (
 > r_regionkey integer not null,
 > r_name varchar(25) not null,
 > r_comment varchar(152)
 >);
0 row(s) returned (0.27 sec)

10.3 CREATE TABLE [AS] SELECT
Allows the user to create a table automatically from the results of a query and then insert the query
results into the table. This command can be used from the rapids-shell or from JDBC.

CREATE TABLE AS SELECT is a simple way to create a copy of an existing table or to create a materialized
copy of a result set. It is similar to the INSERT…SELECT statements except that the INSERT…SELECT
statement appends rows to a table that already exists. As such, CREATE TABLE [AS] SELECT is a quick and
easy way to take a copy of a result set and save it in a separate table.

The column names will default to the column names from the associated columns in the SELECT query,
but the names can also be specified explicitly. If the SELECT query is providing literal values for the
columns, then the column names will be “col1”, “col2”, etc.

RapidsDB Release 4.3.3 User Guide Page 102 © Borrui Data Technology Co. Ltd 2022

The data types for the columns in the newly created table will default to the data types from the
associated columns in the SELECT query. The user can also specify the data types to be used and in this
case if the data types of the columns from the SELECT query do not match those specified for the table
then the columns of the SELECT query will be cast to match. If this results in an incompatible data type
cast then an error will be returned.

The addition of the column data types as well as the AS clause is a RapidsDB extension to the SQL
standard.

Syntax:

statement := CREATE TABLE [IF NOT EXISTS] <tableName>

[(<tableDefinition>)]

[<partitionInformation>]1

[<tableProperties>] 2

[AS] <subquery> [WITH [NO] DATA];

tableDefinition := <objectDefinition> [, <objectDefinition> [, ...]]

objectDefinition:= <columnDefinition> | <tableConstraint> | <indexDefinition>

columnDefinition := <columnName> [<columnType> [<columnConstraint>]]

columnConstraint := NOT NULL | PRIMARY KEY | UNIQUE KEY

tableConstraint := PRIMARY KEY (<expression>)

indexDefinition := UNIQUE KEY (<expression>) | KEY (<expression>)

subquery := <selectOrValuesQuery> | (<selectOrValuesQuery>)

selectOrValuesQuery:= <selectQuery> | <valuesQuery>

selectQuery := SELECT <selectQueryExpression>

valuesQuery := VALUES (<expression> [, <expression [, ...]]) [, (...)]

10.3.1 Examples

RapidsDB Release 4.3.3 User Guide Page 103 © Borrui Data Technology Co. Ltd 2022

Creates a table t with columns and data from t1. This statement is compliant with the SQL
standard.

Creates a table t7 which is a copy of the table t1 but without any data . This statement is
compliant with the SQL standard.

Creates a table t8 with column name from t1.

RapidsDB Release 4.3.3 User Guide Page 104 © Borrui Data Technology Co. Ltd 2022

Creates a table t1 with automatically named columns (“col1”, “col2”, “col3” and “col4”) and one
row of data from the VALUES clause. The data types of the columns are determined by how the
literals are expressed in the VALUES clause according to the SQL standard (e.g., 12.1 is a decimal
while 1.0e0 is a float).

Creates a table t with columns named “id”, “name”, “price” and “disc” and filled with data from
columns a, b and c from table u. Apart from the AS clause this statement is compliant with the
SQL standard.

Attempts to create a table t3 where the column data type for the column “disc” is not
compatible with the data type for the fourth column of the source table, “col4” and so an error
is returned.

10.3.2 Semantics

1. In keeping with the regular CREATE TABLE statement, the catalog and schema names of the target

table name will determine which data source will ultimately hold the table and data for this query.

RapidsDB Release 4.3.3 User Guide Page 105 © Borrui Data Technology Co. Ltd 2022

2. If a table with the same name as the target table already exists in RapidsDB and IF NOT EXISTS is not
specified, then the query will fail and no data from the subquery will be copied into the target table.

3. If a table with the same name as the target table already exists in RapidsDB, and IF NOT EXISTS is
specified, then the query will return a success indicator to the user but no data from the subquery
will be copied into the target table.

4. Specifying a <tableDefinition> allows the user to rename columns from the subquery. This end result
can also be achieved by applying column aliases to the subquery instead. If the <tableDefinition> is
not specified then the column names from the subquery will be used instead.

5. If the <tableDefinition> contains any duplicate column names then an error will be reported.
6. If a <tableDefinition> is specified and if the number of column names in <columnList> is not equal to

the number of columns in the subquery then an error will be returned.
7. If a <tableDefinition> is specified with data types and the data types are incompatible with the

column types of the SELECT statement then an error will be returned. An example of this would be
specifying a column with a timestamp data type when the corresponding column in the SELECT
query returns a boolean. The rules surrounding what data types can be cast are determined by the
RapidsDB CAST operator.

8. When the target table is created there will be no indexes created on it unless a <tableDefinition> is
provided and it contains index definitions. Creating a target table based on a query on a source table
will not result in indexes from the source table being copied to the target table unless they are
explicitly specified in a <tableDefinition> clause.

9. If a <tableDefinition> clause is not specified then the precision and scale of each column will be set
according to the table below:

Datatype Precision Scale

Integer 19 0

Decimal Will be preserved from result
column up to a maximum of 19. If
>19 or if the precision is unknown
then it will be set to 19.

Will be preserved from the result column
up to a maximum of 7. If the scale is >7 or
the scale is unknown then it will be set to
7.

Float Will not be specified. All floating
point columns will be created with
a datatype of FLOAT.

No scale. Scale has no meaning for an
approximate data type.

Varchar Will be preserved from the result
column.

If the result column has no
precision then it will be set to 8000.

No scale.

RapidsDB Release 4.3.3 User Guide Page 106 © Borrui Data Technology Co. Ltd 2022

All other types No precision. No scale.

10. The nullability properties of columns in the SELECT query will be preserved in the target table being
created. However no uniqueness constraints will be preserved as this implies automatic index
creation.

11. If the WITH NO DATA clause is specified then the target table will be created according to the
column definitions of the subquery however no data will be copied into the target table from the
subquery.

12. If it is possible for RapidsDB to do so, the target table being created will be dropped if an error
occurs while copying data into the table. Because RapidsDB is not transactional, there will be error
scenarios where the query may fail and it is not possible for RapidsDB to drop the incomplete table
automatically (e.g., if there is a problem with the connector, internal RapidsDB errors, etc).

13. By specifying table and column constraints in the CREATE TABLE AS SELECT statement (e.g., CREATE
TABLE t (aa INTEGER PRIMARY KEY) AS SELECT a FROM u;), if the SELECT query retrieves a result set
that does not match the column constraint (e.g., the values of column a in the above query are not
unique) then the query will fail while copying the data. For a large data set, it could take a while
before this constraint violation is detected and the failure status returned to the user. Examples of
this would include violations of column uniqueness or nullability (e.g., CREATE TABLE t (col1
INTEGER NOT NULL) AS VALUES (NULL);)

10.3.3 Exclusions

1. The CREATE TABLE AS SELECT statement will not be executed transactionally since RapidsDB has no

support for transactions. This means that it is possible for the table to be created successfully but
an error occurs while copying the data such that the statement fails and the table is not able to be
cleaned up (e.g., a communication problem with the underlying data source).

2. In this release CREATE TABLE AS SELECT statements will not support being pushed down directly to
the underlying data source if the entire statement occurs directly in that data source. This is because
the syntax of CREATE TABLE AS SELECT statements can vary significantly across data sources (and
RapidsDB only supports a common subset that is defined in the standard.

3. RapidsDB will not support SELECT…INTO statements as a synonym of CREATE TABLE AS SELECT.
4. If a value from the subquery exceeds the precision or scale of the table definition then the

underlying storage engine may return an error or it may silently truncate/round the data value when
it is being inserted into the table.

10.3.4 Error Conditions

The following are a common set of conditions that will cause RapidsDB to generate an error:

1. Specifying a column name list where the number of column names does not match the number
of columns in the subquery.

RapidsDB Release 4.3.3 User Guide Page 107 © Borrui Data Technology Co. Ltd 2022

2. Specifying a column name list or table definition where a column name is not unique.
3. Specifying a full table definition but the data type of a column is not compatible with the data

type of the corresponding column in the subquery and the subquery value cannot be cast.
4. Specifying a VALUES subquery where all values for a given column are NULL. In this case the

data type of the column for the CREATE TABLE statement cannot be determined.
5. Specifying a VALUES subquery with multiple rows where the data type for a given column is not

consistent across all rows.
6. Specifying a table definition with a column constraint (e.g., NOT NULL) where the subquery data

does not conform to that constraint (e.g. contains NULL values).
7. Specifying a table definition with a table constraint (e.g., PRIMARY KEY) where the subquery

data does not conform to that constraint (e.g., non-unique values across PK columns).
8. Specifying a column name and data type for some columns but not specifying a data type for all

columns.

10.4 CREATE INDEX
The syntax for the CREATE INDEX command is:

CREATE [UNIQUE] INDEX [IF NOT EXISTS] <indexName> ON <tableReference> (<columnName>, ...)

where:

<tableReference> is:
 [[<catalog>.] [<schema>.]] tableName

NOTE:
MOXE does not support creating indexes.

Example:

CREATE UNIQUE INDEX idx1 on memsql.dw.t1 (c1);

This command would be sent to the MemSQL Connector that is managing the schema “dw” to
create a unique index on table “t1”.

10.5 DROP TABLE
The syntax for the DROP TABLE command is:

DROP TABLE [IF EXISTS] [[<catalog>.]<schema>.]<table name>;

NOTES:

1. The catalog and schema names are only needed when the <table name> is not unique.

RapidsDB Release 4.3.3 User Guide Page 108 © Borrui Data Technology Co. Ltd 2022

2. After dropping the table, the metadata for the associated Connector will be refreshed, and
there is no need to manually run the REFRESH command.

Examples:

DROP TABLE test.t1;

This command would be sent to the Connector managing the schema named “test” to drop the
table “t1”

DROP TABLE memsql.test.t1;

This command would be sent to the MemSQL Connector that is managing the schema “test” to
drop the table “t1”

10.6 TRUNCATE TABLE
The TRUNCATE TABLE deletes all of the data from a table and any associated indexes.

The syntax for the TRUNCATE TABLE command is:

TRUNCATE TABLE [[<catalog>.]<schema>.]<table name>;

NOTES:

1. The catalog and schema names are only needed when the <table name> is not unique.

Examples:

TRUNCATE TABLE rapidsse.public.t1

This command would be sent to the RapidsSE Connector to delete all of the data from table t1.

TRUNCATE TABLE memsql.test.t1;

This command would be sent to the MemSQL Connector that is managing the schema “test” to
delete the data from table t1.

11 IMPORT/EXPORT Using IMPEX Connector

11.1 Overview
The IMPEX Connector is a new style of Connector that was introduced in Release 4.3. An IMPEX
Connector supports the ability to treat disk files as regular tables which can participate in federated
queries (ie. in SELECT or INSERT queries). The implication of this is that the user does not need to go
through an ETL process in order to load the data from the files into regular tables, such as MOXE tables,

RapidsDB Release 4.3.3 User Guide Page 109 © Borrui Data Technology Co. Ltd 2022

instead, the files can be queried directly from the disk. For Release 4.3, an IMPEX Connector can read
csv (delimited) files from any node in the RapidsDB Cluster, in future releases other file systems such as
Amazon S3, Google Cloud and HDFS will be supported along with other file formats such as Parquet and
ORC. After any data has been written to disk (in a supported format, ie csv for Release 4.3) it is
available for querying. If needed, the user can also use an IMPEX Connector to load all or a subset of
the data into regular tables, such as MOXE tables or other federated data sources such as Oracle,
Postgres or MySQL. When reading the data from disk, an IMPEX Connector supports both column
pruning and predicate pushdown so that only the data that is needed for the query is passed to the
RapidsDB Execution Engine thereby allowing very large data files to be processed by the RapidsDB
Engine where the size of the data can exceed the memory of the system. When reading the disk files
the user does not need to define a schema for the table, an IMPEX Connector can estimate the data type
for each field in the data by reading a sample of the data and the imputing the data type based on the
actual data. This means that users can do fast exploration of data files without having to first assign a
schema for the table. For example, by using a LIMIT clause the user can quickly look at a subset of the
data and then can use other SQL predicates to do more sophisticated analysis of the data. If the schema
for a file (or set of files) is known, then the user can provide that schema to the IMPEX Connector as part
of the query.

An IMPEX Connector also supports the capability to write query results to files. Finally, an IMPEX
Connector supports bulk import to allow for the rapid loading of data from disk files into any federated
tables, and bulk export to allow for the rapid writing of the contents of any federated tables to disk files.
Bulk EXPORT provides the ability for the user to take a snapshot of the federated database, and bulk
IMPORT provides the ability to reload that snapshot.

Example:

RapidsDB Release 4.3.3 User Guide Page 110 © Borrui Data Technology Co. Ltd 2022

In the example above the IMPEX Connector is reading data from the folder “/data/new_orders” on
RapidsDB node “db3” and that data is then getting joined with data from two MOXE tables, “cust” and
“inv”.

11.2 IMPEX Connector Type
The IMPEX Connector type is used for creating Connectors that are used for doing import and export
operations. The following sections provide more details on how to configure and use IMPEX
Connectors.

11.3 Creating an IMPEX Connector
The user can create import and export Connectors using the IMPEX Connector type. To create an IMPEX
Connector use the following command

CREATE CONNECTOR <name> TYPE IMPEX [WITH <key>='<value>' [,<key>='<value>']]
[NODE * | NODE <node name> [NODE <node name>] [<further node names>]];

where <key> is one of the supported IMPEX Connector properties as defined in the next section.

Example:

CREATE CONNECTOR CSV TYPE IMPEX WITH DELIMITER='|', PATH='/';

Would create an IMPEX Connector named “CSV” that can run on any node in the RapidsDB cluster and
where the delimiter character is '|', and the base path is the root directory ('/'). All other IMPEX
properties would use default values as described below (see 11.4).

CREATE CONNECTOR CSV TYPE IMPEX WITH DELIMITER='|', PATH='/' NODE 'db1';

This would create the same Connector as the previous example with the one difference being that this
Connector could only run on the RapidsDB node named “db1”.

11.4 IMPEX Connector Properties
The IMPEX Connector type supports the following properties which can be set either when creating the
Connector using the CREATE CONNECTOR command (see examples below, also, refer to the Installation
and Management Guide for more information on creating Connectors) or as part of an import reference
(see 11.6) or export reference (see 11.7):

Key: Default Syntax Description
FORMAT 'CSV' 'CSV' | 'RAW' Specifies the file format:

• CSV: A delimited file (see
section 11.5)

• RAW: will produce a table with
a single VARCHAR column
containing the full text of each

RapidsDB Release 4.3.3 User Guide Page 111 © Borrui Data Technology Co. Ltd 2022

record in the imported file. See
section 11.9.2.9 for examples)

PATH '/var/tmp/rapids' '<fully qualified path>' Specifies the fully qualified path
name to use as the base path name
for all import references (see 11.6)
or export references (see 11.7).

ERROR_PATH '/var/tmp/rapids_
errors'

'<fully qualified path>' Specifies the fully qualified path
name to use as the base path for
the error files generated if an
import operation fails (see 11.13.1
for more information).

ERROR_LIMIT 10 Integer, -1 | 0 | >0 Specifies the maximum number of
allowable errors on an import
operation. Once the limit is
reached the import will be
terminated. The possible values
are:
-1 no limit
0 terminate on first error
>0 terminate after specified
number of errors
See 11.13.2 for more information

BACKUP false [] | true | false

For EXPORT only.

For bulk export operations (see
11.12), when the REPLACE option is
specified, if BACKUP is “false”, then
any existing files with a suffix of
“.csv” in the specified folder or sub-
folders prior to the export
operation will get deleted and then
new files created for the export.

For bulk export operations (see
11.12), when the REPLACE option is
specified, if BACKUP is “true”, then
any existing files with a suffix of
“.csv” in the specified folders or
sub-folders prior to the export
operation will be moved to a
backup folder so that they can be
recovered if needed and then new
files created for the export.

Note: if “true” or “false” are
omitted and just the keyword
“BACKUP” is specified, that is
equivalent to “true”.

RapidsDB Release 4.3.3 User Guide Page 112 © Borrui Data Technology Co. Ltd 2022

CHARSET ‘UTF-8’ ‘<string>’
as defined by the Java
charset class
https://docs.oracle.com
/javase/8/docs/api/java
/nio/charset/Charset.ht
ml

Specifies the character set to be
used. Some examples:
‘GBK’
‘GB2312’
‘GB18030’
‘Big5’

DELIMITER ‘,’ ‘<char>’
Non-empty, single
character string

Specifies the field delimiter
character. This can only be a single
character.

ENCLOSED_BY ‘”’
double quote

‘<char>’
Non-empty, single
character string

Specifies whether a field is
optionally enclosed by a specified
character. This is commonly used
to specify that string fields are
optionally enclosed by either a
single quote or double quote
character and that character should
not be included as part of the field
data. If the same character is also
included as part of the field data,
then it must be escaped (see
ESCAPE_CHAR below for more
details).

ESCAPE_CHAR ‘\’ ‘<char>’
Non-empty, single
character string

Specifies the character to be used
as an escape character. This will
allow the user to include embedded
field delimiters and enclosed_by
characters in the data .

FILTER ‘*.*’ ‘<string>’
Non-empty, character
string using a REGEX
format

For IMPORT only.

The FILTER property allows the user
to control which files are imported
in a wildcard import operation and,
optionally, how table names are
created from the names of
imported files. The FILTER value is a
character string containing a Java
regular expression (a “regex”).

When performing a wildcard
import, IMPEX examines each
filename available from the import
source. Only files whose names
satisfy the FILTER regex are
imported. (For a tutorial on Java
regular expressions, see

https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html
https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html
https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html
https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html

RapidsDB Release 4.3.3 User Guide Page 113 © Borrui Data Technology Co. Ltd 2022

https://www.oracle.com/technical-
resources/articles/java/regex.html)

A "capturing group" can be used in
the regex to control how IMPEX
creates a table name from the
name of an imported file. The
characters matched by the first
group in the regex are used as the
table name. If the regex contains no
groups, then the table name will
match the first part of the file name
(before any dot suffixes).

Note: for convenience, a FILTER
value that starts with an asterisk is
interpreted as a simple filename
filter. For example FILTER='*.csv'
will import all files with a “.csv”
extension.

GUESS false [] | true | false For IMPORT only

When “false” specifies that the
Connector should treat all columns
as polymorphic strings, which will
be automatically cast into the
appropriate data types depending
on the query (see 11.9.2.5 for more
information).

When “true” specifies that the
Connector should derive the
column data types for any columns
whose data type has not been
specified. The data types are
derived by sampling the data being
imported and then determining
what the appropriate data type
would be for each input field in the
sampled data. For example, if the
sampled data contained 100
records, and a given field contains
alphanumeric characters for all 100
records, then it would be mapped
to a VARCHAR column, if the field
contained just integer characters
then it would be mapped to an

RapidsDB Release 4.3.3 User Guide Page 114 © Borrui Data Technology Co. Ltd 2022

INTEGER, and so on (see 11.9.2.5
for more information).

Note: if “true” or “false” are
omitted and just the keyword
“GUESS” is specified, that is
equivalent to “true”.

HEADER false [] | true | false

When “true” specifies that the data
file has a header record which has
the column names to use on an
import, or has the column names
from the result set for an export.

When “false” specifies that there is
no header record.

Note: if “true” or “false” are
omitted and just the keyword
“HEADER” is specified, that is
equivalent to “true”.

TERMINATOR '\n' '\n' Specifies how records are
terminated. For this release the
TERMINATOR is fixed as '\n', with
an optional '\r'

TRAILING false [] | true | false

When “true” IMPEX will ignore a
trailing field separator (i.e. where
the field separator is immediately
followed by the record terminator
character) on each line of a file
being imported and will append a
trailing separator to each line of a
file being exported.

When “false” a trailing field
separator will indicate a null value
for the last column of the record
being imported. For export no
trailing field separator will be
written out.

Note: if “true” or “false” are
omitted and just the keyword
“TRAILING” is specified, that is
equivalent to “true”.

Examples:

RapidsDB Release 4.3.3 User Guide Page 115 © Borrui Data Technology Co. Ltd 2022

CREATE CONNECTOR CSV TYPE IMPEX WITH DELIMITER='|';

Would create an IMPEX Connector named “CSV” where the delimiter character is '|'. The “PATH”
property was not set and so would default to “/var/tmp/rapids”.

CREATE CONNECTOR CSV TYPE IMPEX WITH DELIMITER='|', PATH='/';

Would create an IMPEX Connector named “CSV” where the delimiter character is '|' and the “PATH”
property is set to the root directory (“/”).

11.5 CSV (Delimited) File Formatting
This section describes how IMPEX Connectors handle the different CSV file formatting properties
described in the previous section when reading and writing delimited data.

11.5.1 Text Handling

11.5.1.1 ESCAPE SEQUENCES
There are a set of special characters that only come into effect when prefixed with the escape character
(by default the escape character is set to the backslash character). In the following table, the
ESCAPE_CHAR is set to the backslash character. When an escape sequence is detected in the input data
it will get replaced with its associated ASCII character as shown in the table below:

Escape Sequence ASCII Character
\b A backspace character <x08>
\f A form feed character <x0C>
\n A newline (linefeed) character <x0A>
\r A carriage return character <x0D>
\t A tab character <x09>
\v A vertical tab character <x0B>

On output, any ASCII escape characters will get replaced by their associated escape sequence.

Example 1:

This example shows the output for a file using the tab (\t) and newline (\n) escape characters.

Input file: /var/tmp/rapids/tab_and_newline.csv:

123456789012345678901234567890
\tTabbed field\nNewline

RapidsDB Release 4.3.3 User Guide Page 116 © Borrui Data Technology Co. Ltd 2022

rapids > select * from ('node://db1/text/tab_and_newline.csv');
COL1

123456789012345678901234567890
 Tabbed field
Newline

2 row(s) returned (0.06 sec)

Example 2:

This example shows all of the possible escape sequences (using the default escape character) being read
from the file “/var/tmp/rapids/text/escape_seq.csv” and then written out to the file
“/var/tmp/rapids/text/escape_seq_out.csv”.

Input file /var/tmp/rapids/text/escape_seq.csv:

Tab: \t Form Feed: \f Backspace: \b Newline: \n Vertical: \v Return: \r

rapids > select * from ('node://db1/text/escape_seq.csv') to
('node://db1/text/escape_seq_out.csv');

0 row(s) returned (0.08 sec)

Output file: /var/tmp/rapids/text/escape_seq_out.csv:

"Tab: \t Form Feed: \f Backspace: \b Newline: \n Vertical: \v Return: \r"

11.5.1.2 Handling of Leading and Trailing Blanks
Leading and trailing space characters are considered part of a VARCHAR column.

When the ENCLOSED_BY (see 11.5.6) is used to enclose the string, the leading and trailing space
characters are ONLY those characters contained within the enclosed string (see example below for more
on this), any space characters outside of the enclosing characters are ignored. When the string is not
enclosed by the ENCLOSED_BY character, then all characters in the field are included, including all
leading and trailing blanks.

Example:

In this example the first record has two fields that are not enclosed by the ENCLOSED_BY character, and
so all of the data between the field delimiters for those fields is included. In the third record, the second
and third fields are enclosed, and so only the characters between the ENCLOSED_BY characters are
included.

File: /var/tmp/rapids/text/lead_trail_blanks.csv:

RapidsDB Release 4.3.3 User Guide Page 117 © Borrui Data Technology Co. Ltd 2022

1, 4 leading blanks,3 trailing blanks ,1
2,A2345678901234567890,A1234567890123456789,2
3," 4 leading blanks","3 trailing blanks ",3

rapids > select * from ('node://db1/text/lead_trail_blanks.csv');
 COL1 COL2 COL3 COL4
 ---- ---- ---- ----
 1 4 leading blanks 3 trailing blanks 1
 2 A2345678901234567890 A1234567890123456789 2
 3 4 leading blanks 3 trailing blanks 3

3 row(s) returned (0.07 sec)
rapids > select char_length(col3) from
('node://db1/text/lead_trail_blanks.csv');
 [1]

 20
 20
 20

3 row(s) returned (0.06 sec)

11.5.1.3 Empty Strings
An empty (zero-length) string is defined as a field with two adjacent ENCLOSED_BY characters (see
11.5.6) for more information on ENCLOSED_BY character). For example, the second field in the sample
record below would be interpreted as an empty string assuming that the ENCLOSED_BY character is the
double quote character:

Example:

File: /var/tmp/rapids/text/empty_string.csv:

1,"",1

rapids > select * from ('node://db1/text/empty_string.csv');
 COL1 COL2 COL3
 ---- ---- ----
 1 1

1 row(s) returned (0.05 sec)
rapids > select char_length(COL2) from ('node://db1/text/empty_string.csv');
 [1]

 0

1 row(s) returned (0.05 sec)

RapidsDB Release 4.3.3 User Guide Page 118 © Borrui Data Technology Co. Ltd 2022

NOTE – this is different from an empty field, where there are two adjacent field delimiter characters,
which is interpreted as a NULL value (see 11.5.4) for more information on nulls) as shown in the example
below:

File: /var/tmp/rapids/text/null_string.csv:

1,,,,

rapids > select * from ('node://db1/text/null_string.csv');
 COL1 COL2 COL3 COL4
 ---- ---- ---- ----
 1 NULL NULL NULL

1 row(s) returned (0.06 sec)

In this example, fields two through four are all interpreted as null values.

11.5.2 Dates and Timestamps
The format for dates is YYYY-MM-DD, and the format for the time portion of a timestamp is
HH.MM.SS.nnnnnn

Example:

File: /var/tmp/rapids/text/date_and_timestamp.csv

1,2021-09-01,2021-09-01 11:17:23.123456
2,"2021-09-01","2021-09-01 11:17:23.123456"

rapids > select * from (FILE 'node://db1/text/date_and_timestamp.csv') AS
t(c1 integer, c2 date, c3 timestamp);
 C1 C2 C3
 -- -- --
 1 2021-09-01 2021-09-01 11:17:23.123456
 2 2021-09-01 2021-09-01 11:17:23.123456

2 row(s) returned (0.59 sec)

11.5.3 Booleans
The table below specifies the valid input values for booleans:

RapidsDB Release 4.3.3 User Guide Page 119 © Borrui Data Technology Co. Ltd 2022

Column value Possible Inputs
FALSE 0

any string start with one of the following characters: f, F, n, N
TRUE >0

any string start with one of the following characters: t, T, y, Y

Example:

File: /var/tmp/rapids/text/booleans.csv:

0
false
FALSE
n
no
1
true
TRUE
y
YES

rapids > select * from ('node://db1/text/booleans.csv') AS t(c1 boolean);
 C1
 --
 false
 false
 false
 false
 false
 true
 true
 true
 true
 true

10 row(s) returned (0.06 sec)

11.5.4 NULL Values
A null value is represented by an empty field, where an empty field is defined as two adjacent delimiters
with no intervening spaces, or a delimiter followed immediately by the record terminator.

NOTE, this is not the same as an empty string (see 11.5.1.3) which is defined as two adjacent
“ENCLOSED_BY” characters.

RapidsDB Release 4.3.3 User Guide Page 120 © Borrui Data Technology Co. Ltd 2022

Example:

File: /var/tmp/rapids/text/null_string.csv:

1,,,,

rapids > select * from ('node://db1/text/null_string.csv') AS t(c1 integer,
c2 integer, c3 decimal, c4 varchar);
 C1 C2 C3 C4
 -- -- -- --
 1 NULL NULL NULL

1 row(s) returned (0.07 sec)

In this example, fields two through four are all interpreted as null values.

11.5.5 DELIMITER='<char> | \t'
The field delimiter can be a single character or the tab character ('\t').

Example 1: using the pipe character as the delimiter

File: /var/tmp/rapids/text/delimiter.csv

1| 4 leading blanks|3 trailing blanks |1
2|12345678901234567890|12345678901234567890|2
3|" 4 leading blanks"|"3 trailing blanks "|3

rapids > select * from ('node://db1/text/delimiter.csv' WITH DELIMITER='|');
COL1 COL2 COL3 COL4
---- ---- ---- ----
1 4 leading blanks 3 trailing blanks 1
2 12345678901234567890 12345678901234567890 2
3 4 leading blanks 3 trailing blanks 3

3 row(s) returned (0.07 sec)

Example 2: using the tab character as the delimiter:

File: /var/tmp/rapids/text/tab_delimiter.csv
1 4 leading blanks 3 trailing blanks 1
2 12345678901234567890 12345678901234567890 2
3 " 4 leading blanks" "3 trailing blanks " 3

rapids > select * from ('node://db1/text/tab_delimiter.csv' WITH
DELIMITER='\t');
COL1 COL2 COL3 COL4

RapidsDB Release 4.3.3 User Guide Page 121 © Borrui Data Technology Co. Ltd 2022

---- ---- ---- ----
1 4 leading blanks 3 trailing blanks 1
2 12345678901234567890 12345678901234567890 2
3 4 leading blanks 3 trailing blanks 3

3 row(s) returned (0.06 sec)

11.5.6 ENCLOSED_BY='<char> ' | "'"
Specifies whether an input field is optionally enclosed by the specified character. This is commonly
used to specify that character fields are enclosed by either a single quote or double quote character and
that character should not be included as part of the field data.

NOTES

1. To explicitly specify a single quote as the delimiter, you must enclose the single quote inside
double quotes, all other characters are specified using single quotes.

2. Use of the ENCLOSED_BY for character fields is optional, and so an input record could include
some fields using the enclosed_by character with other character fields not using the
enclosed_by character as shown in the example below.

3. If the ENCLOSED_BY character is also included as part of the field data, then the character must
be escaped (see ESCAPE_CHAR 11.5.7).

4. When exporting data, character fields will only be enclosed using the ENCLOSED_BY character
when the data for that field includes one or more DELIMITER (see 11.5.5) characters.

5. Numercial and Boolean values cannot be enclosed

The default enclosed_by character is a double quote.

Examples:

ENCLOSED_BY DATA TYPE INPUT DATA TO BE STORED
 VARCHAR 'DAVE's DATA' 'DAVE's DATA'
 VARCHAR "'DAVE's DATA'" 'DAVE's DATA'
 VARCHAR 'DAVE\'s DATA' 'DAVE's DATA'
 VARCHAR '"DAVE"s DATA"' INVALID
 INTEGER '9' INVALID
 DECIMAL '9.0' INVALID
 FLOAT '9.0' INVALID
 TIMESTAMP '2020-09-01 09:00:00' 2020-09-01 09:00:00
 BOOLEAN 'T' FALSE
 BOOLEAN "T" TRUE
 INTEGER "9" 9
 DECIMAL "9.0" 9.0
 FLOAT "9.0" 9.0

RapidsDB Release 4.3.3 User Guide Page 122 © Borrui Data Technology Co. Ltd 2022

 TIMESTAMP "2020-09-01 09:00:00" 2020-09-01 09:00:00
ENCLOSED_BY="'" VARCHAR 'DAVE's DATA' INVALID
 VARCHAR "'DAVE's DATA'" INVALID
 VARCHAR 'DAVE\'s DATA' DAVE's DATA
 VARCHAR '"DAVE"s DATA"' "DAVE"s DATA"
 INTEGER '9' 9
 DECIMAL '9.0' 9.0
 FLOAT '9.0' 9.0
 TIMESTAMP '2020-09-01 09:00:00' 2020-09-01 09:00:00
 BOOLEAN 'T' TRUE
 BOOLEAN "T" FALSE
 INTEGER "9" INVALID
 DECIMAL "9.0" INVALID
 FLOAT "9.0" INVALID
 TIMESTAMP "2020-09-01 09:00:00" 2020-09-01 09:00:00

Example 1: This example uses the default ENCLOSED_BY double quote character.

File: /var/tmp/rapids/text/default_enclosed_by.csv

1,'DAVE's DATA',"DAVE's DATA",T,9.0,9.0,"2020-09-01 09:00:00"

rapids > select * from ('node://db1/text/default_enclosed_by.csv') AS t(c1
integer, c2 varchar, c3 varchar, c4 boolean, c5 decimal, c6 float, c7
timestamp);
 C1 C2 C3 C4 C5 C6 C7
 -- -- -- -- -- -- --
 1 'DAVE's DATA' DAVE's DATA true 9.0 9.0 2020-09-01 09:00:00.0

1 row(s) returned (0.07 sec)

Example 2: This example sets the ENCLOSED_BY character to a single quote:

File: /var/tmp/rapids/text/single_quote_enclosed_by.csv

1,'DAVE\'s DATA','"DAVE"s DATA"',T,9.0,9.0,'2020-09-01 09:00:00'

rapids > select * from ('node://db1/text/single_quote_enclosed_by.csv' WITH
ENCLOSED_BY="'") AS t(c1 integer, c2 varchar, c3 varchar, c4 boolean, c5
decimal, c6 float, c7 timestamp);
 C1 C2 C3 C4 C5 C6 C7
 -- -- -- -- -- -- --
 1 DAVE's DATA "DAVE"s DATA" true 9.0 9.0 2020-09-01 09:00:00.0

1 row(s) returned (0.59 sec)

RapidsDB Release 4.3.3 User Guide Page 123 © Borrui Data Technology Co. Ltd 2022

11.5.7 ESCAPE_CHAR='<char>'
Specifies the character to be used as the escape character. This allows the user to include embedded
field delimiters and enclosed_by characters in the data .

Default: '\' (backslash)

Example 1:

Shows the escaping of the ENCLOSED_BY and DELIMITER characters when those characters are the
defaults. The escaped characters are hilited:

File:/var/tmp/rapids/text/escape_char.csv

1,"Escaped ENCLOSED_BY\"",Escaped DELIMITER \,,End of row

rapids > select * from ('node://db1/text/escape_char.csv');
 COL1 COL2 COL3 COL4
 ---- ---- ---- ----
 1 Escaped ENCLOSED_BY" Escaped DELIMITER , End of row

1 row(s) returned (0.56 sec)

Example 2:

Shows the same example as before except in this example the ESCAPE_CHAR is set to the dollar
character. The escaped characters are hilited:

File: /var/tmp/rapids/text/escape_char_dollar.csv

1,"Escaped ENCLOSED_BY$"",Escaped DELIMITER $,,End of row

rapids > select * from ('node://db1/text/escape_char_dollar.csv' WITH
ESCAPE_CHAR='$') ;
 COL1 COL2 COL3 COL4
 ---- ---- ---- ----
 1 Escaped ENCLOSED_BY" Escaped DELIMITER , End of row

1 row(s) returned (0.56 sec)

11.5.8 HEADER
Specifies whether the data file has a header record which has the column names to use.

File: /var/tmp/rapids/text/header.csv

id,name,dob
1,Jim Smith,2004-04-01

RapidsDB Release 4.3.3 User Guide Page 124 © Borrui Data Technology Co. Ltd 2022

rapids > select * from ('node://db1/text/header.csv' WITH HEADER);
 id name dob
 -- ---- ---
 1 Jim Smith 2004-04-01

1 row(s) returned (0.06 sec)

11.5.9 CHARSET
Specifies the character set to be used. Some examples:

• 'GBK'
• 'GB2312'
• 'GB18030'
• 'Big5'

Refer to https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html for a list of the
possible character set names.

Example:

This example shows the character set being set to the “GBK” character set:

File: /var/tmp/rapids/text/charset_gbk.csv

1,今天天气很暖和上周六下午温度升至9度。太阳很明亮

rapids > select * from ('node://db1/text/charset_gbk.csv' WITH
CHARSET='GBK');

COL1 COL2

---- ----

1 浠婂ぉ澶╂皵寰堟殩鍜屼笂鍛ㄥ叚涓嬪崍娓╁害鍗囪嚦9搴︺�傚お闃冲緢鏄庝寒

1 row(s) returned (0.14 sec)

11.5.10 TRAILING
When “true” IMPEX will ignore a trailing field separator (i.e. where the field separator is immediately
followed by the record terminator character) on each line of a file being imported and will append a
trailing separator to each line of a file being exported.

https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html

RapidsDB Release 4.3.3 User Guide Page 125 © Borrui Data Technology Co. Ltd 2022

When “false” a trailing field separator will indicate a null value for the last column of the record being
imported. For export no trailing field separator will be written out.

Example 1:

This example shows how the trailing delimiter will be ignored:

File: /var/tmp/rapids/text/trailing.csv

1,field 2,field 3,

rapids > select * from ('node://db1/text/trailing.csv' WITH TRAILING);
COL1 COL2 COL3
---- ---- ----
1 field 2 field 3

1 row(s) returned (0.05 sec)

Example 2:

This example uses the same data file as example 1, but this time the “TRAILING” property is not set and
so the trailing delimiter will be included in the import operation resulting in a null value for the final
field:

rapids > select * from ('node://db1/text/trailing.csv');
COL1 COL2 COL3 COL4
---- ---- ---- ----
1 field 2 field 3 NULL

1 row(s) returned (0.05 sec)

11.6 IMPORT References
The user specifies the location and formatting information for the data to be imported using an Import
Reference:

The table below describes each option:

Option Required? Default Description

RapidsDB Release 4.3.3 User Guide Page 126 © Borrui Data Technology Co. Ltd 2022

connectorName No IMPORT The name of an existing IMPEX Connector.
FILE No FILE Indicates that the name specified by the quotedUrl

(see below) refers to a file to be imported.

This is the default for non-bulk IMPORT/EXPORT
operations

FILES No FILES Used for bulk import operations (see 11.10).
Indicates that name specified by the quotedUrl (see
below) refers to a folder which contains a set of
files to be imported. The name of each file (minus
any dot suffixes) is the name of the table where the
data from the file will be written.

This is the default for bulk IMPORT/EXPORT
operations

FOLDER No Indicates that the name specified by the quotedUrl
(see below) refers to a folder which contains a set
of files to be imported.

FOLDERS No Used for bulk import operations (see 11.10).
Indicates that name specified by the quotedUrl (see
below) refers to a folder, which contains a set of
sub-folders to be imported. The name of each sub-
folder is the name of the table where the imported
data from the files in the sub-folder will be written.

url see quotedUrl
quotedUrl Yes Specifies the location of the data to be imported

using the following format:
'node://<RDP node>/< path name>'

where
<RDP node> is the RDP node name where the data
to be imported is located

<path name> is the relative path name to the
location of the data (relative to the setting for the
PATH property, see 11.4)

Examples:
With PATH set to the default “/var/tmp/rapids”:
'node://db1/data'
specifies that the data is to be imported from the
directory “/var/tmp/rapids/data” on RapidsDB
node “db1”

For a custom IMPEX Connector with PATH set to
“/”:
'node://db1/data/log1.csv'

RapidsDB Release 4.3.3 User Guide Page 127 © Borrui Data Technology Co. Ltd 2022

specifies that the data is to be imported from the
file “/data/log1.csv” on RapidsDB node “db1”

quotedSpec No See quotedUrl
transformerName No Not supported for this release
properties No Connector-defined properties (as key = value pairs)

for the operation. By convention, explicitly
specified properties override properties of the
same name in the Connector (see 11.4 for the list
of Properties).

Below are some examples of import references:

• 'node://db1/data/table1.csv'

As no Connector name is specified, this import reference is for the default import Connector
named “IMPORT” (see 11.9). The file name specified, “data/table1.csv” is relative to the PATH
Property for the Connector, which for the “IMPORT” Connector is “/var/tmp/rapids/”(unless the
PATH Property for the “IMPORT” Connector is changed – see 11.9.3), and so the fully qualified
path name is “/var/tmp/rapids/data/table1.csv” on RapidsDB cluster node “db1”.

• CSV:: 'node://db1/data/table1.csv' WITH DELIMITER='|'

Specifies that the IMPEX Connector named “CSV” should be used and so the file name
“data/table1.csv” will be relative to the PATH Property for the “CSV” Connector. For example if
the “CSV” has Connector has the PATH Property set to '/' (root directory), then the specified file
name would get resolved as “/data/table1.csv”. The field delimiter is set to the pipe character
'|'.

• FOLDER 'node://db1/data/table1' WITH DELIMITER='|', HEADER

Using the default “IMPORT” Connector, the path for the folder “data/table1” would get resolved
to “/var/tmp/rapids/data/table1” on RapidsDB cluster node “db1”. The field delimiter would be
set to the pipe character and the HEADER option is set to indicate that the data file has a header
record

• FOLDERS CSV:: 'node://db1/data/tpch'

For a bulk import, specifies that the IMPEX Connector named “CSV” should be used and so the
folder name “data/tpch” will be relative to the PATH Property for the “CSV” Connector. For
example if the “CSV” Connector has the PATH Property set to '/' (root directory), then the
specified folder name would get resolved as “/data/tpch”.

RapidsDB Release 4.3.3 User Guide Page 128 © Borrui Data Technology Co. Ltd 2022

11.7 EXPORT References
The user specifies the location and formatting information for the data to be exported using an Export
Reference:

The table below describes each option:

Option Required? Default Description
connectorName No EXPORT The name of an existing IMPEX Connector
FILE No FILE Indicates that the name specified by the quotedUrl

(see below) refers to a file where the data for the
table to be exported will be written.

FILES No FILES Used for bulk export operations (see 11.12).
Indicates that name specified by the quotedUrl (see
below) refers to a folder which will contain the files
for the set of tables being exported.

FOLDER No Indicates that the name specified by the quotedUrl
(see below) refers to a folder where a file will be
created that will store the data from the table
being exported.

FOLDERS No Used for bulk export operations (see 11.12).
Indicates that name specified by the quotedUrl (see
below) refers to a folder where the sub-folders for
the exported tables will be created (if needed)
using the table name for the sub-folder name.
Each sub-folder will then have a file created in it
that will store the data from the table being
exported

url No See quotedUrl below
quotedUrl Yes Specifies the location for the exported data using

the following format:
'node://<RDP node>/< path name>'

where
<RDP node> is the RDP node name where the data
to be imported is located

<path name> is the relative path name to the
location of the data (relative to the setting for the
PATH property, see 11.4)

With PATH set to the default “/var/tmp/rapids”:

RapidsDB Release 4.3.3 User Guide Page 129 © Borrui Data Technology Co. Ltd 2022

'node://db1/data'
specifies that the data is to be exported to the
directory “/var/tmp/rapids/data” on RapidsDB
node “db1”

For a custom IMPEX Connector with PATH set to
“/”:
'node://db1/data/log1.csv'
specifies that the data is to be exported to the file
“/data/log1.csv” on RapidsDB node “db1”

quotedSpec No See quotedUrl above
transformerName No Not supported for this release
properties No Connector-defined properties (as key = value pairs)

for the operation. By convention, explicitly
specified properties override properties of the
same name in the Connector (see 11.4 for the list
of Properties).

Below are some examples of export references:

• 'node://db1/data/table1.csv'

As no Connector name is specified, this import reference is for the default export Connector
named “EXPORT” (see 11.8). The file name specified, “data/table1.csv” is relative to the PATH
Property for the Connector, which for the “EXPORT” Connector is “/var/tmp/rapids/”(unless the
PATH Property for the “IMPORT” Connector is changed – see 11.8.3), and so the fully qualified
path name is “/var/tmp/rapids/data/table1.csv” on RapidsDB cluster node “db1”.

• CSV:: 'node://db1/data/table1.csv'

Specifies that the IMPEX Connector named “CSV” should be used and so the file name
“data/table1.csv” will be relative to the PATH Property for the “CSV” Connector. For example if
the “CSV” has Connector has the PATH Property set to '/' (root directory), then the specified file
name would get resolved as “/data/table1.csv”.

• FOLDER 'node://db1/data/table1'

Using the default “EXPORT” Connector, the path for the folder “data/table1” would get resolved
to “/var/tmp/rapids/data/table1” on RapidsDB cluster node “db1”.

• FOLDERS CSV:: 'node://db1/data/tpch_files'

RapidsDB Release 4.3.3 User Guide Page 130 © Borrui Data Technology Co. Ltd 2022

For a bulk export, specifies that the IMPEX Connector named “CSV” should be used and so the
folder name “data/tpch” will be relative to the PATH Property for the “CSV” Connector. For
example, if the “CSV” has Connector has the PATH Property set to '/' (root directory), then the
specified folder name would get resolved as “/data/tpch”.

11.8 Default IMPORT and EXPORT Connectors

11.8.1 Usage
RapidsDB comes with two built-in Connectors named “IMPORT” and “EXPORT”, that are used when an
import reference (see 11.6) or an export reference (see 11.7) does not specify a Connector name. For
example, 'node://db1/data/table1.csv'.

11.8.2 Default Properties
By default, the “IMPORT” and “EXPORT” Connectors have the following IMPEX Connector Properties
(see 11.4):

Key: Value
FORMAT 'CSV'
PATH '/var/tmp/rapids'
ERROR_PATH '/var/tmp/rapids_errors'
ERROR_LIMIT 10
BACKUP false
CHARSET 'UTF-8'
DELIMITER ','
ENCLOSED_BY '"'
ESCAPE_CHAR '\'
FILTER '*.*'
GUESS false
HEADER false
TERMINATOR '\n'
TRAILING false

11.8.3 Changing the IMPEX Properties for the “IMPORT” and “EXPORT” Connectors
The user can change any of the properties for the “IMPORT” or “EXPORT” Connectors by dropping the
Connector and then recreating the Connector with the same name.

NOTE: If the “IMPORT” or “EXPORT” Connector is dropped, it must be recreated with the same name
because when doing an import or export operation, RapidsDB will attempt to use a Connector named
“IMPORT” when an import reference (see 11.6) does not specify a Connector name, and similarly, the
system will attempt to use a Connector named “EXPORT” when an export reference (see 11.7) does
not specify a Connector name. If the system cannot find the relevant Connector then the import or
export operation will fail.

RapidsDB Release 4.3.3 User Guide Page 131 © Borrui Data Technology Co. Ltd 2022

One of the most common Properties to change would be the “PATH” property, to set an alternate
default root path name. For example, if all data files will come from the folder “/data” then the default
IMPORT Connector could be changed as shown below:

rapids > drop connector import;
0 row(s) returned (0.13 sec)
rapids > create connector import type impex with PATH='/data';
0 row(s) returned (2.37 sec)

The following import examples assume that the default “IMPORT” Connector was not reconfigured, and
that an IMPEX Connector named “CSV” was created with the “PATH” Property set to the root directory
(“/”):

rapids > create connector csv type impex with PATH='/data';

0 row(s) returned (2.09 sec)

SELECT * FROM ('node://db1/data/table1.csv');

This command would result in data being read from the file “table1.csv” in the directory
“/var/tmp/rapids/data” on RapidsDB node “db1”using the default “IMPORT” Connector.

SELECT id, name FROM (CSV:: 'node://db1/data/table1.csv') AS t(id integer, name varchar) WHERE
t.name='BorayData';

This command would select the data for the first two fields from the file “table1.csv” using the
Connector named “CSV” where the file “table1.csv” resides on the RapidsDB cluster node “db1” in
the directory “/data” (because PATH='/'), where the “name” field is the string 'BorayData'.

The following export examples assume that the default “EXPORT” Connector was not reconfigured:

SELECT * FROM table1 TO 'node://db1/data/table1.csv';

This command would append the contents of the table named “table1” to the file “table1.csv” using
the default EXPORT Connector where the file “table1.csv” resides in the directory
“/var/tmp/rapids/data” on the RapidsDB cluster node “db1” and where the delimiter is ','.

SELECT * FROM table1 TO CSV:: 'node://db1/data/table1.csv';

In this example the EXPORT reference specifies the Connector name “CSV”, and so the default
“EXPORT” Connector would not be used.

11.9 IMPORT using SELECT and INSERT

11.9.1 IMPORT Table Expressions
A table expression has now been extended to also include an import reference:

RapidsDB Release 4.3.3 User Guide Page 132 © Borrui Data Technology Co. Ltd 2022

This means that an import reference (see 11.6) can now appear anywhere in a SELECT or INSERT
statement where a regular table reference can appear, and it also means that the user can provide an
alias name for the import reference, and can also specify a subset of the columns (fields) to be
imported. For example:

 SELECT * FROM ('node://db1/data/table1.csv');

The hilited text above is an import reference which replaces the usual table reference.

Section 11.9.2 provides examples of using an import reference with SELECT and INSERT statements.

11.9.2 IMPORT using a SELECT statement

11.9.2.1 Overview
The user can import the data as part of a regular SELECT statement, where the usual table reference is
replaced with an import reference. In the following examples the hilited text is the import reference.

Example 1:

SELECT * FROM (FILE 'node://db1/data/table1.csv');

This command would result in data being read from the file “table1.csv” in directory
“var/tmp/rapids/data” (the default PATH) on RapidsDB node “db1”using the default “IMPORT”
IMPEX Connector (see 11.8).

Example 2:

SELECT id, name FROM (FILE 'node://db1/data/table1.csv' WITH PATH='/') AS t(id integer, name
varchar) WHERE t.name='Jones';

This command would select the data for the first two fields from the file “table1.csv” using the
default IMPEX Connector (see 11.8) where the file “table1.csv” resides on the RapidsDB cluster node
“db1” in the directory “/data” (because PATH='/'), where the field delimiter is the character '|', with
the column names “id” and “name” being used for the first two fields and where the “name” field is
the string 'Jones'.

Example 3:

SELECT * FROM (CSV:: FOLDER 'node://db1/data/table1');

This command would select all of the data from the files in the folder “table1” using the IMPEX
Connector named “CSV” where the folder “table1” resides on the RapidsDB cluster node “db1” in
the directory “/data” (because PATH='/' for the “CSV” IMPEX Connector), and where the field

RapidsDB Release 4.3.3 User Guide Page 133 © Borrui Data Technology Co. Ltd 2022

delimiter is the character '|'. The column headings would be the usual default column headings for
a result set, which are “COL1”, “COL2” … etc.

See sections 11.9.2.10 and 11.9.2.11 for more detailed examples using SELECT statements.

11.9.2.2 Column Naming Using Default Column Names
If there are no column names associated with the input data (see the following sections for assigning
column names), then the IMPEX Connector will use the default column names used by the RapidsDB
Execution Engine which are “COL1”, “COL2”, etc.

Example:

rapids > SELECT * FROM ('node://db1/SFSMALL/region.csv') LIMIT 1;
COL1 COL2 COL3
---- ---- ----
1 UNITED STATES adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

1 row(s) returned (0.06 sec)

11.9.2.3 Column Naming Using AS clause
The user can also specify the column names to be associated with each of the input fields using the “AS
<tableAlias><(<columnAliases>)” clause as shown in the example below:

rapids > SELECT * FROM ('node://db1/SFSMALL/region.csv') AS (r_regionkey ,r_name
,r_comment) LIMIT 1;

R_REGIONKEY R_NAME R_COMMENT
----------- ------ ---------
1 UNITED STATES adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

1 row(s) returned (0.05 sec)

11.9.2.4 Column Naming Using HEADER option
It is common with csv files for the first record of the file to be a header record that contains a list of the
column names. The IMPEX Connector allows this by setting the “HEADER” option to true. For example:

rapids > SELECT * FROM ('node://db1/SFSMALL/regionPipe.csv' WITH DELIMITER='|',
HEADER) LIMIT 1;
R_REGIONKEY R_NAME R_COMMENT
----------- ------ ---------
1 UNITED STATES adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

1 row(s) returned (0.05 sec)

RapidsDB Release 4.3.3 User Guide Page 134 © Borrui Data Technology Co. Ltd 2022

11.9.2.5 Column Data Typing Using GUESS Property
If no column data types are assigned to the columns (see sections 11.9.2.5, 11.9.2.6 and 11.9.2.8) then
the IMPEX Connector will use the “GUESS” Property (see 11.4) to determine the data types as follows:

1. GUESS=FALSE (default) – the IMPEX Connector will treat all columns where the data type is not
explicitly specified (see 11.9.2.6 and 11.9.2.8 for specifying data types) as polymorphic strings,
which are strings that will be automatically cast into the appropriate data type based on the
expression where the column is referenced in a query. For example,

SELECT * FROM ('node://db1/SFSMALL/region.csv') WHERE COL1>10;

 In this example, the first column will be automatically cast to an integer

 In the following example, the same field will be left as a string and not cast:

SELECT * FROM ('node://db1/SFSMALL/region.csv') WHERE COL1='10A';

If the column contains values that cannot be cast to the required data type, then an error will be
returned.

2. GUESS=TRUE – for any columns where the data type is not explicitly specified (see 11.9.2.6 and
11.9.2.8 for specifying data types) the IMPEX Connector will examine a sample of the data from
the file and use that sample to determine what is the best data type that fits each column in the
data. If the data is uniform across the entire file, then the IMPEX Connector will generally assign
the correct data type, but if the data is not uniform then the IMPEX Connector could assign the
wrong data type which could result in a data type conversion error when querying the data. For
example, if a field had mostly integer values, but there were a few values that were
alphanumeric, then the IMPEX Connector could assign a data type of INTEGER to the column
because in the data sample that was read to determine the data types, all of the values for that
field were integers. This could result in an error when querying the column associated with that
field. For example, in the query below, the IMPEX Connector assigned a data type of INTEGER to
the column “r_regionkey”, but the query failed when looking for an alphanumeric value:

rapids > SELECT * FROM ('node://db1/SFSMALL/regionPipe.csv' WITH
HEADER,delimiter='|',GUESS) where r_regionkey='4A';
Unexpected Exception:
Line 1 position 90: Unresolved operator or function name: =(FastInteger, LiteralString)

The CAST function can be used to address this issue:
rapids > SELECT * FROM ('node://db1/SFSMALL/regionPipe.csv' WITH
HEADER,delimiter='|',GUESS) where cast(r_regionkey as varchar)='4A';
0 row(s) returned (0.04 sec)

Example 1:

RapidsDB Release 4.3.3 User Guide Page 135 © Borrui Data Technology Co. Ltd 2022

File: /var/tmp/SFSMALL/partsupp.csv:

1,1,42,562.15,unsure
1,2,640,974.09,reliable
1,3,720,550.17,dishonest
1,4,644,461.39,weak
…

rapids > SELECT * FROM ('node://db1/SFSMALL/partsupp.csv' WITH GUESS)
LIMIT 1;
 COL1 COL2 COL3 COL4 COL5
 ---- ---- ---- ---- ----
 1 1 42 562.15 unsure

1 row(s) returned (0.07 sec)

The following data types will be assigned:

Column Data type
COL1 integer
COL2 integer
COL3 integer
COL4 decimal
COL5 varchar

Example 2:

In this example the data type for the fourth column was specified using the “AS” clause (see 11.9.2.6), and
all other data types will be imputed by the Connector:

rapids > SELECT * FROM ('node://db1/SFSMALL/partsupp.csv' WITH GUESS)
AS (COL1,COL2,COL3,COL4 float,COL5) LIMIT 1;
COL1 COL2 COL3 COL4 COL5
---- ---- ---- ---- ----
1 1 42 562.15 unsure

1 row(s) returned (0.05 sec)

The following data types will be assigned:

Column Data type
COL1 integer
COL2 integer
COL3 integer
COL4 float
COL5 varchar

RapidsDB Release 4.3.3 User Guide Page 136 © Borrui Data Technology Co. Ltd 2022

11.9.2.6 Column Data Typing Using AS clause
In addition to using the AS clause to name columns, the user can also use the AS clause to specify the
data types to be used for the columns. For example:

rapids > SELECT * FROM ('node://db1/SFSMALL/region.csv') AS (r_regionkey integer,
r_name varchar, r_comment varchar) LIMIT 1;
 R_REGIONKEY R_NAME R_COMMENT
 ----------- ------ ---------
 1 UNITED STATES adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

1 row(s) returned (0.05 sec)

The following data types will be assigned:

Column Data type
r_regionkey integer
r_name varchar
r_comment varchar

It is also possible to just specify the data types for some of the columns and let the IMPEX Connector
assign the other data types by setting the “GUESS” Property to TRUE. In the example below, the data
types for two of the columns were specified and the “GUESS” Property was set TRUE so that the Impex
Connector would assign the data types for the other columns:

rapids > SELECT * FROM ('node://db1/SFSMALL/customer.csv' WITH GUESS) AS
(c_custkey integer, c_name, c_address, c_nationkey, c_phone, c_acctbal
decimal, c_mktsegment, c_comment) LIMIT 1;
 C_CUSTKEY C_NAME C_ADDRESS C_NATIONKEY C_PHONE C_ACCTBAL
C_MKTSEGMENT C_COMMENT
 --------- ------ --------- ----------- ------- --------- ----
-------- ---------
 0 Richardson Market 3 111 7994.73
FURNITURE negative

1 row(s) returned (0.05 sec)

The following data types will be assigned:

Column Data type
c_custkey integer
c_name varchar
c_address varchar
c_nationkey integer
c_phone integer
c_acctbal decimal
c_mktsegment varchar
c_comment varchar

RapidsDB Release 4.3.3 User Guide Page 137 © Borrui Data Technology Co. Ltd 2022

11.9.2.7 Column Skipping/Pruning Using AS Clause
The user can skip columns of the input data using the AS clause by simply omitting the column name
from the list of columns in the input data. For example, the following “AS” clause would include
columns one and two of the input, skip columns three and four, include column five, and then ignore
any remaining columns: “AS(L_ORDERKEY integer, L_PARTKEY integer,,,L_QUANTITY integer)”

Example:

Below is an entire record of data:

rapids > SELECT * FROM ('node://db1/SFSMALL/lineitem.csv') LIKE
moxe.lineitem limit 1;

 L_ORDERKEY L_PARTKEY L_SUPPKEY L_LINENUMBER L_QUANTITY
L_EXTENDEDPRICE L_DISCOUNT L_TAX L_RETURNFLAG L_LINESTATUS
L_SHIPDATE L_COMMITDATE L_RECEIPTDATE L_SHIPINSTRUCT L_SHIPMODE
L_COMMENT

 ---------- --------- --------- ------------ ---------- ----------
----- ---------- ----- ------------ ------------ ---------- ------
------ ------------- -------------- ---------- ---------

 462 27 2 0 117
3908.88 419.61 411.43 R P 2010-09-23
2015-05-17 2011-01-03 COLLECT COD RAIL lousy

1 row(s) returned (0.05 sec)

The following statement uses the “AS” clause from above to only select a subset of the input columns:

rapids > SELECT * FROM ('node://db1/SFSMALL/lineitem.csv') AS(L_ORDERKEY
integer, L_PARTKEY integer,,,L_QUANTITY integer) limit 1;

 L_ORDERKEY L_PARTKEY L_QUANTITY

 ---------- --------- ----------

 462 27 117

1 row(s) returned (0.04 sec)

11.9.2.8 Column Naming and Data Typing Using LIKE clause
An alternative way to assign a schema to a file is to use the “LIKE” clause where the name of an existing
table can be specified which will result in the schema for that table being used for the file being
imported. For example:

rapids > SELECT * FROM ('node://db1/SFSMALL/region.csv') LIKE moxe.region LIMIT 1;

RapidsDB Release 4.3.3 User Guide Page 138 © Borrui Data Technology Co. Ltd 2022

 R_REGIONKEY R_NAME R_COMMENT
 ----------- ------ ---------
 1 UNITED STATES adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

1 row(s) returned (0.05 sec)

11.9.2.9 RAW Data Format
In situations where a data file contains data that is completely unknown, such as where the field
delimiter is not known, the user can use the “RAW” format option to import the data as a single
VARCHAR column. The data can then be viewed and further processing can then be done based on the
actual data. This is format is also useful for fetching miscellaneous text files from locations within the
RapidsDB cluster.

Example:

rapids > SELECT * FROM ('node://db1/SFSMALL/region.csv' WITH FORMAT='RAW');
RAW

1,UNITED STATES,adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg
2,NORTH AMERICA,aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd
3,EUROPE,dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds
4,SOUTH AMERICA,csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda
5,ASIA,i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

5 row(s) returned (0.04 sec)

rapids > SELECT * FROM ('node://db1/var/log/dmesg' WITH
PATH='/',FORMAT='RAW') LIMIT 2;
RAW

[0.000000] Initializing cgroup subsys cpuset
[0.000000] Initializing cgroup subsys cpu

2 row(s) returned (0.04 sec)

11.9.2.10 SELECT FROM FILE
The following examples illustrate the use of an IMPEX Connector for importing data directly from a file
to be used in a SELECT statement. As “FILE” is the default option it is not necessary to specify that
option when referencing a file.

Example 1:

Select from the file “text/lead_trail_blanks.csv” which is in the folder “/var/tmp/rapids”.

Below is the contents of the file “lead_trail_blanks.csv”:

[rapids@db1 text]$ cat /var/tmp/rapids/text/lead_trail_blanks.csv

RapidsDB Release 4.3.3 User Guide Page 139 © Borrui Data Technology Co. Ltd 2022

1, 4 leading blanks,3 trailing blanks ,1
2,A2345678901234567890,A1234567890123456789,2
3," 4 leading blanks","3 trailing blanks ",3

The SELECT command below selected all of the data from the file “lead_trail_blanks.csv” using the
default “IMPORT” Connector where the file “lead_trail_blanks.csv” resides on the RapidsDB cluster node
“db1” in the folder “/var/tmp/rapids/text”, and where the field delimiter is the character ',' (this is the
default for “IMPORT” Connector). The column headings would be the usual default column headings
for a result set, which are “COL1”, and “COL2”.

rapids > select * from ('node://db1/text/lead_trail_blanks.csv');
 COL1 COL2 COL3 COL4
 ---- ---- ---- ----
 1 4 leading blanks 3 trailing blanks 1
 2 A2345678901234567890 A1234567890123456789 2
 3 4 leading blanks 3 trailing blanks 3

3 row(s) returned (0.07 sec)
rapids > select char_length(col3) from
('node://db1/text/lead_trail_blanks.csv');
 [1]

 20
 20
 20

3 row(s) returned (0.06 sec)

Example 2:

Selecting from a file where the delimiter is the pipe character ('|') and the file includes a header record
with the column names to use.

Below is the content of the file:

[rapids@db1 rapids]$ cat /var/tmp/rapids/SFSMALL/regionPipe.csv
R_REGIONKEY|R_NAME|R_COMMENT
1|UNITED STATES|adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg
2|NORTH AMERICA|aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd
3|EUROPE|dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds
4|SOUTH AMERICA|csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda
5|ASIA|i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

This command below selected all of the data from the file “regionPipe.csv” using the default “IMPORT”
Connector, where the file “regionPipe.csv” resides on the RapidsDB cluster node “db1” in the folder

RapidsDB Release 4.3.3 User Guide Page 140 © Borrui Data Technology Co. Ltd 2022

“/var/tmp/rapids/SFMALL”, and where the field delimiter is the character '|'. The file includes a header
record which has the column names to use.

rapids > SELECT * FROM ('node://db1/SFSMALL/regionPipe.csv' WITH
HEADER,delimiter='|');

R_REGIONKEY R_NAME R_COMMENT

----------- ------ ---------

1 UNITED STATES adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

2 NORTH AMERICA aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd

3 EUROPE dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds

4 SOUTH AMERICA csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda

5 ASIA i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

5 row(s) returned (0.05 sec)

Example 3:
This example shows the use of a custom IMPEX Connector named “CSV_HEADER” which has the default
delimiter set to the pipe character, and with HEADER set true:

rapids > CREATE CONNECTOR CSV_HEADER TYPE IMPEX WITH DELIMITER='|', HEADER;
0 row(s) returned (2.21 sec)

rapids > SELECT * FROM (csv_header:: 'node://db1/SFSMALL/regionPipe.csv');

R_REGIONKEY R_NAME R_COMMENT

----------- ------ ---------

1 UNITED STATES adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

2 NORTH AMERICA aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd

3 EUROPE dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds

4 SOUTH AMERICA csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda

5 ASIA i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

5 row(s) returned (0.05 sec)

Example 4:

RapidsDB Release 4.3.3 User Guide Page 141 © Borrui Data Technology Co. Ltd 2022

This example shows data filtering by using a predicate (“r_regionkey=4”) on the input data, and
illustrates the use of the “AS” clause for defining the column names.

rapids > SELECT * FROM ('node://db1/SFSMALL/region.csv') AS
region(r_regionkey integer, r_name varchar) WHERE r_regionkey=4;
 R_REGIONKEY R_NAME
 ----------- ------
 4 SOUTH AMERICA

1 row(s) returned (0.10 sec)

Example 5:
This example illustrates the use of a complex query to filter the data, where the query includes both
predicates on the input data along with a join to another MOXE table:

rapids > SELECT * FROM (FILE 'node://db1/SFSMALL/customer.csv') AS IMPORTED
(c_custkey INTEGER, c_name VARCHAR, c_address VARCHAR, c_nationkey INTEGER,
c_phone VARCHAR, c_acctbal DECIMAL, c_mktsegment VARCHAR, c_comment
VARCHAR) WHERE c_acctbal > 3000 and c_nationkey=22 AND EXISTS (SELECT * FROM
vip_customer WHERE vip_customer.c_custkey = IMPORTED.c_custkey) ;
 C_CUSTKEY C_NAME C_ADDRESS C_NATIONKEY C_PHONE C_ACCTBAL
C_MKTSEGMENT C_COMMENT [9]
 --------- ------ --------- ----------- ------- --------- ------
------ --------- ---
 20 Egerton Main 22 111 3815.45
AUTOMOBILE satisfied 1
 28 Stringer Mission 22 111 8516.37
FURNITURE dissatisfied 1
 61 Riley Turk 22 111 6320.39
MACHINERY angry 1

3 row(s) returned (0.18 sec)
Example 6:

This example illustrates the use of the LIKE clause to provide the column names and column data types
for the input data. In this example, the table definition for the table “moxe.customer” is being used:

rapids > SELECT * FROM ('node://db1/SFSMALL/customer.csv') AS IMPORTED LIKE
moxe.customer WHERE IMPORTED.c_acctbal > 3000 and c_nationkey=22 AND EXISTS
(SELECT * FROM vip_customer WHERE vip_customer.c_custkey =
IMPORTED.c_custkey) ;
 C_CUSTKEY C_NAME C_ADDRESS C_NATIONKEY C_PHONE C_ACCTBAL
C_MKTSEGMENT C_COMMENT [9]
 --------- ------ --------- ----------- ------- --------- ------
------ --------- ---
 20 Egerton Main 22 111 3815.45
AUTOMOBILE satisfied 1

RapidsDB Release 4.3.3 User Guide Page 142 © Borrui Data Technology Co. Ltd 2022

 28 Stringer Mission 22 111 8516.37
FURNITURE dissatisfied 1
 61 Riley Turk 22 111 6320.39
MACHINERY angry 1

3 row(s) returned (0.18 sec)

NOTE: When filtering data using predicates, it is highly recommended that the AS clause includes the
data types for all columns as shown in examples 3, and 4 above or the LIKE clause is used to provide
the column definitions from an existing table as shown in example 5 above.

11.9.2.11 SELECT FROM FOLDER
The following examples illustrate the use of an IMPEX Connector for importing data directly from a
folder to be used in a SELECT statement. The files to be accessed from the folder are controlled by the
“FILTER” property, which by default is set to '*.*' (to read all files).

Example 1:
This example shows reading all of the files from a folder:

Folder /var/tmp/rapids/tpch_small/region:

[rapids@db1 region]$ ls /var/tmp/rapids/tpch_small/region
region.csv

rapids > SELECT * FROM (FOLDER 'node://db1/tpch_small/region');

COL1 COL2 COL3
---- ---- ----
1 UNITED STATES adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg
2 NORTH AMERICA aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd
3 EUROPE dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds
4 SOUTH AMERICA csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda
5 ASIA i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

5 row(s) returned (0.49 sec)

Example 2:
In this example a “FILTER” option is used to only import files ending in “.csv”. The folder for the example
below includes two “.csv” files which will get loaded and one file named “junk” that will be ignored:

Folder /var/tmp/rapids/SFSMALL/region:

[rapids@db1 region]$ ls /var/tmp/rapids/SFSMALL/region
junk region1.csv region2.csv

RapidsDB Release 4.3.3 User Guide Page 143 © Borrui Data Technology Co. Ltd 2022

rapids > SELECT * FROM (FOLDER 'node://db1/SFSMALL/region' WITH
FILTER='*.csv');
COL1 COL2 COL3
---- ---- ----
1 UNITED STATES adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg
2 NORTH AMERICA aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd
3 EUROPE dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds
4 SOUTH AMERICA csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda
5 ASIA i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

5 row(s) returned (0.05 sec)

Example 3:
This example shows the use of a custom Connector named “CSV_HEADER” which has the “HEADER”
Property set true and the delimiter character set to the pipe character:

rapids > SELECT * FROM (csv_header:: FOLDER 'node://db1/SFSMALL/regionPipe');
R_REGIONKEY R_NAME R_COMMENT
----------- ------ ---------
1 UNITED STATES adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg
2 NORTH AMERICA aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd
3 EUROPE dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds
4 SOUTH AMERICA csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda
5 ASIA i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

5 row(s) returned (0.08 sec)

Example 4:
This example illustrates the use of a predicate to filter the data, and also includes the “AS” clause to
specify the column names and data types:

rapids > SELECT * FROM (FOLDER 'node://db1/SFSMALL/region' WITH
FILTER='*.csv') AS region(r_regionkey integer, r_name varchar) WHERE
r_regionkey=4;
 R_REGIONKEY R_NAME
 ----------- ------
 4 SOUTH AMERICA

1 row(s) returned (0.07 sec)

Example 5:
This example is the same as the previous example except a “LIKE” clause is used in place of the “AS”
clause to specify the column names and data types:

RapidsDB Release 4.3.3 User Guide Page 144 © Borrui Data Technology Co. Ltd 2022

rapids > SELECT * FROM (FOLDER 'node://db1/SFSMALL/region' WITH
FILTER='*.csv') AS region LIKE moxe.region WHERE r_regionkey=4;
 R_REGIONKEY R_NAME R_COMMENT
 ----------- ------ ---------
 4 SOUTH AMERICA csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc
asbvda

1 row(s) returned (0.09 sec)

NOTE: When filtering data using predicates, it is highly recommended that the AS clause includes the
data types for all columns in the AS clause as shown in example 2 above or includes the LIKE clause as
shown in example 4 above.

11.9.2.12 INSERT … SELECT
When doing an INSERT … SELECT, the data types the IMPEX Connector will use when reading the data
associated with any of the files specified in the SELECT statement will be controlled by the column data
types assigned to that file using either the “AS” clause (see 11.10.2.6) or the “LIKE” clause (see
11.10.2.8). If the data types are not specified then, by default, the IMPEX Connector will

Example 1:

This example shows an insert into the MOXE table named “region” of the data from all of the files
ending in “.csv” in the folder “region” using the default “IMPORT” Connector where the folder “region”
resides on the RapidsDB cluster node “db1” in the folder “/var/tmp/rapids/SFSMALL”.

rapids > create table moxe.REGION (
 > r_regionkey integer NOT NULL,
 > r_name varchar(25),
 > r_comment varchar(152)
 >);
0 row(s) returned (0.09 sec)
rapids > INSERT INTO moxe.region SELECT * FROM (FOLDER 'node://db1/SFSMALL/region'
WITH FILTER='*.csv');
0 row(s) returned (0.08 sec)
rapids > select * from moxe.region;
 R_REGIONKEY R_NAME R_COMMENT
 ----------- ------ ---------
 1 UNITED STATES adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg
 2 NORTH AMERICA aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd
 3 EUROPE dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds
 4 SOUTH AMERICA csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda
 5 ASIA i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

5 row(s) returned (0.05 sec)

Example 2:

This example demonstrates selecting a subset of the fields from the input file by using the “AS” clause to
name the fields from the input file that are to be imported, and also the use of a predicate to filter the
data being inserted:

RapidsDB Release 4.3.3 User Guide Page 145 © Borrui Data Technology Co. Ltd 2022

rapids > create table moxe.REGION2 (
 > r_regionkey integer NOT NULL,
 > r_name varchar(25)
 >);
0 row(s) returned (0.10 sec)
rapids > INSERT into moxe.region2 SELECT r_regionkey, r_name FROM
('node://db1/SFSMALL/region.csv') AS r(r_regionkey integer, r_name varchar)
WHERE r.r_regionkey<3;
0 row(s) returned (0.08 sec)
rapids > select * from moxe.region2;
 R_REGIONKEY R_NAME
 ----------- ------
 1 UNITED STATES
 2 NORTH AMERICA

2 row(s) returned (0.05 sec)
Example 3:

This command also selects a subset of the fields to be inserted and uses a header record in the input file
to name the fields in the input file which can then be used to specify which fields are to be imported:

rapids > truncate region2;
0 row(s) returned (0.05 sec)
rapids > INSERT into moxe.region2 SELECT r_regionkey, r_name FROM
('node://db1/SFSMALL/regionPipe.csv' WITH DELIMITER='|', HEADER);
0 row(s) returned (0.08 sec)
rapids > select * from region2;
 R_REGIONKEY R_NAME
 ----------- ------
 1 UNITED STATES
 2 NORTH AMERICA
 3 EUROPE
 4 SOUTH AMERICA
 5 ASIA

5 row(s) returned (0.05 sec)

Example 4:
This is the same as the previous example except this example uses a custom Connector named
“CSV_HEADER” which has the “HEADER” Property set “true” and the “DELIMITER” set to the pipe
character:

rapids > truncate region2;
0 row(s) returned (0.05 sec)
rapids > INSERT into moxe.region2 SELECT r_regionkey, r_name FROM
(csv_header::'node://db1/SFSMALL/regionPipe.csv');
0 row(s) returned (0.08 sec)

RapidsDB Release 4.3.3 User Guide Page 146 © Borrui Data Technology Co. Ltd 2022

rapids > select * from region2;
 R_REGIONKEY R_NAME
 ----------- ------
 1 UNITED STATES
 2 NORTH AMERICA
 3 EUROPE
 4 SOUTH AMERICA
 5 ASIA

5 row(s) returned (0.05 sec)

11.9.2.13 CREATE AS SELECT
The user can create a new table us the CREATE <table> as SELECT … clause, where the SELECT can
include an import reference. The column names and data types will follow the rules specified in
sections 11.10.2.2 to 11.10.2.8.

NOTE:

1. When creating a MOXE table, if the “PARITITION BY” clause is not specified then the table will
get created as a reference (replicated) table, where there will be a full copy of the data on
every node in the RapidsDB cluster where the associated MOXE Connector is running. If the
“PARTITION BY” clause is specified, then there will be one copy of the data distributed across
all of the nodes in the RapidsDB cluster where the associated MOXE Connector is running, and
the data will be partitioned using the column(s) specified in the “PARTITION BY” clause. Refer
to sections 10.2.1 and 10.2.2 for more information on partitioned and reference tables.
Examples 3 and 4 below shows the use of the “PARTITION BY” clause.

2. When creating a table managed by any of the Connectors except for MOXE, the “PARTITION
BY” clause is not currently supported, and so the “CREATE TABLE” command will either fail
with an error or the “PARTITION BY” clause will get ignored and the table will get created as a
non-partitioned table.

Example 1:

This command creates a replicated MOXE table named “customer1” with the data from the file
“customer.csv”. The column names are the default column names, “COL1”, “COL2” etc and the data
types would all be set to VARCHAR because the “GUESS” property (see 11.4) is set false by default.

rapids > create table moxe.customer1 as select * from
('node://db1/SFSMALL/customer.csv');

0 row(s) returned (0.26 sec)

rapids > describe table customer1;

TABLE_NAME COLUMN_NAME DATA_TYPE ORDINAL IS_PARTITION_KEY
IS_NULLABLE PRECISION SCALE COMMENT PROPERTIES

RapidsDB Release 4.3.3 User Guide Page 147 © Borrui Data Technology Co. Ltd 2022

---------- ----------- --------- ------- ---------------- -------
---- --------- ----- ------- ----------

CUSTOMER1 COL1 VARCHAR 0 false
true NULL NULL NULL NULL

CUSTOMER1 COL2 VARCHAR 1 false
true NULL NULL NULL NULL

CUSTOMER1 COL3 VARCHAR 2 false
true NULL NULL NULL NULL

CUSTOMER1 COL4 VARCHAR 3 false
true NULL NULL NULL NULL

CUSTOMER1 COL5 VARCHAR 4 false
true NULL NULL NULL NULL

CUSTOMER1 COL6 VARCHAR 5 false
true NULL NULL NULL NULL

CUSTOMER1 COL7 VARCHAR 6 false
true NULL NULL NULL NULL

CUSTOMER1 COL8 VARCHAR 7 false
true NULL NULL NULL NULL

8 row(s) returned (0.50 sec)

Example 2:

This example creates a replicated MOXE table named “customer1” with the data from the file
“customer.csv”. The column names are the default column names, “COL1”, “COL2” etc and the data
types are derived by looking at a sample of the data because the “GUESS” property (see 11.4) is set to
true.

rapids > create table moxe.customer1 as select * from
('node://db1/SFSMALL/customer.csv' WITH GUESS);
0 row(s) returned (0.27 sec)
rapids > describe table customer1;
TABLE_NAME COLUMN_NAME DATA_TYPE ORDINAL IS_PARTITION_KEY
IS_NULLABLE PRECISION SCALE COMMENT PROPERTIES
---------- ----------- --------- ------- ---------------- -------
---- --------- ----- ------- ----------
CUSTOMER1 COL1 INTEGER 0 false
true 64 NULL NULL NULL
CUSTOMER1 COL2 VARCHAR 1 false
true NULL NULL NULL NULL

RapidsDB Release 4.3.3 User Guide Page 148 © Borrui Data Technology Co. Ltd 2022

CUSTOMER1 COL3 VARCHAR 2 false
true NULL NULL NULL NULL
CUSTOMER1 COL4 INTEGER 3 false
true 64 NULL NULL NULL
CUSTOMER1 COL5 INTEGER 4 false
true 64 NULL NULL NULL
CUSTOMER1 COL6 DECIMAL 5 false
true 17 2 NULL NULL
CUSTOMER1 COL7 VARCHAR 6 false
true NULL NULL NULL NULL
CUSTOMER1 COL8 VARCHAR 7 false
true NULL NULL NULL NULL

8 row(s) returned (0.31 sec)

Example 3:

This example creates a partitioned MOXE table using the “PARTITION BY” clause and also shows the use
of the “AS” clause to specify the column names and data types to be used in the new table:

rapids > CREATE TABLE moxe.special_customer AS SELECT * FROM
('node://db1/SFSMALL/customer.csv') AS IMPORTED (c_custkey INTEGER, c_name
VARCHAR, c_address VARCHAR, c_nationkey INTEGER, c_phone VARCHAR, c_acctbal
DECIMAL, c_mktsegment VARCHAR, c_comment VARCHAR) PARTITION BY HASH ON
(c_custkey) WHERE c_acctbal > 0 AND EXISTS (SELECT * FROM vip_customer WHERE
vip_customer.c_custkey = IMPORTED.c_custkey) ;
0 row(s) returned (0.41 sec)
rapids > describe table special_customer;
TABLE_NAME COLUMN_NAME DATA_TYPE ORDINAL IS_PARTITION_KEY
IS_NULLABLE PRECISION SCALE COMMENT PROPERTIES
---------- ----------- --------- ------- ----------------
----------- --------- ----- ------- ----------
SPECIAL_CUSTOMER C_CUSTKEY INTEGER 0 false
true 64 NULL NULL NULL
SPECIAL_CUSTOMER C_NAME VARCHAR 1 false
true NULL NULL NULL NULL
SPECIAL_CUSTOMER C_ADDRESS VARCHAR 2 false
true NULL NULL NULL NULL
SPECIAL_CUSTOMER C_NATIONKEY INTEGER 3 false
true 64 NULL NULL NULL
SPECIAL_CUSTOMER C_PHONE VARCHAR 4 false
true NULL NULL NULL NULL
SPECIAL_CUSTOMER C_ACCTBAL DECIMAL 5 false
true 17 2 NULL NULL
SPECIAL_CUSTOMER C_MKTSEGMENT VARCHAR 6 false
true NULL NULL NULL NULL
SPECIAL_CUSTOMER C_COMMENT VARCHAR 7 false
true NULL NULL NULL NULL

RapidsDB Release 4.3.3 User Guide Page 149 © Borrui Data Technology Co. Ltd 2022

8 row(s) returned (0.31 sec)
rapids > select count(*) from special_customer;
 [1]

 75

1 row(s) returned (0.08 sec)

11.10 Bulk IMPORT
A new IMPORT statement is now supported for directly importing multiple tables with a single request:

bulkReference:

The table below describes each option:

Option Required? Default? Description
IF EXISTS No No Import only items whose name matches an existing

table in the catalog and/or schema specified by the
bulkReference (see below)

IF NOT EXISTS No No Import only items whose name does not match an
existing table in the catalog and/or schema specified by
the bulkReference (see below)

APPEND No Yes Append the imported data to an existing table, if any.
REPLACE No No Truncate an existing table before new data is imported
bulkReference Yes No Specifies the three-level (catalog, schema, table)

naming for the target table(s) into which data will be
imported. Wildcards may be specified (using an asterisk
'*') for any of the name components. If the catalog
name and/or schema name are omitted, the
CURRENT_CATALOG and CURRENT_SCHEMA session
settings are used, if set. The Connector may support
properties (see below) which impact how the bulk
reference is interpreted.

NOTE: All of the tables to be imported into must be
managed by the same Connector, if that is not the
case then an error will be returned (see Example 4 in
section 11.10.2 below for more details). To ensure

RapidsDB Release 4.3.3 User Guide Page 150 © Borrui Data Technology Co. Ltd 2022

that this does not happen it is recommended that the
schema name is always specified and if this is not
unique, then the catalog name should also be
included.

importReference Yes No An Import Reference (see 11.7) identifying the data to
be imported

NOTE:

1. When doing a bulk import, if the target table does not exist then the table will get created by
the Connector associated with the bulkReference (see above) using the following rules:
a. The column names will be the default column names described in section 11.10.2.2
b. The column data types will depend on the setting of the “GUESS” property as described

in section 11.10.2.5. If the “GUESS” Property is set to FALSE, then all of the columns will
be created as VARCHAR columns.

c. The table will get created with defaults for any primary keys or partitioning keys, which
could result in unexpected performance or memory limits issues. For example, a MOXE
Connector will create the table as a Reference table (see 10.2.2) because there is no
partitioning information, and this means that each node in the RapidsDB cluster where
the associated MOXE Connector is running will have a full copy of the imported data, and
this could result in MOXE running out of memory. To avoid any such issues, it is highly
recommended that all target tables in a bulk import are first created with the
appropriate primary and partitioning keys, and then the bulk import executed against
the existing tables. Alternatively, the tables can be imported individually using a CREATE
… AS SELECT statement where the primary and partitioning keys can be specified (see
11.10.2.12).

2. When doing a bulk import, if the target tables already exist, then it is recommended that the
“GUESS” property is set to FALSE so that all data fields are read in as polymorphic strings (see
11.10.2.5) and then automatically cast to the data type for the column in the target table.

11.10.1 Bulk IMPORT Using FILES Option
When doing a bulk import operation the “FILES” option indicates that the path name specified in the
import reference (see 11.6) refers to a folder which contains a set of files to be imported. The name of
each file (minus any dot suffixes) is the name of the table where the data from the file will be written.
The “FILES” option is the default and so it does not need to be specified.

Example 1:

Bulk import a set of files from the folder “/var/tmp/rapids/tpch_small_files” from RapidsDB Cluster
node “db1” using the default “IMPORT” Connector (see 11.8).

Folder /var/tmp/rapids/tpch_small_files:

RapidsDB Release 4.3.3 User Guide Page 151 © Borrui Data Technology Co. Ltd 2022

[rapids@db1 rapids]$ ls tpch_small_files
customer.csv lineitem.csv nation.csv orders.csv part.csv partsupp.csv
region.csv supplier.csv

rapids > IMPORT MOXE.* FROM 'node://db1/tpch_small_files' WITH GUESS;
0 row(s) returned (12.17 sec)

This command imported all the files from folder “/var/tmp/rapids/tpch_small_files” (“customer.csv”,
“lineitem.csv”, “nation.csv”, etc) creating new tables (see “show table;” output below) of the same
names (minus the “.csv” suffix) in the schema MOXE if they did not already exist and where the column
names for any newly created table were set to “COL1”, “COL2”, etc, and where the data types were
imputed from the data in the files (based on the “GUESS” property being set TRUE (see 11.9.2.5) (see
“describe table” output below). If the tables already existed, the new data would be inserted alongside
the existing data.

rapids > show tables;
CATALOG_NAME SCHEMA_NAME TABLE_NAME
------------ ----------- ----------
MOXE MOXE CUSTOMER
MOXE MOXE LINEITEM
MOXE MOXE NATION
MOXE MOXE ORDERS
MOXE MOXE PART
MOXE MOXE PARTSUPP
MOXE MOXE REGION
MOXE MOXE SUPPLIER
…

rapids > describe table region;
TABLE_NAME COLUMN_NAME DATA_TYPE ORDINAL IS_PARTITION_KEY
IS_NULLABLE PRECISION SCALE
---------- ----------- --------- ------- ---------------- -------
---- --------- -----
REGION COL1 INTEGER 0 false
true 64 NULL
REGION COL2 VARCHAR 1 false
true NULL NULL
REGION COL3 VARCHAR 2 false
true NULL NULL

3 row(s) returned (0.28 sec)

Finally, the query below shows that the correct number of records were loaded into the table:

[rapids@db1 rapids]$ cat tpch_small_files/lineitem.csv | wc -l
3000

RapidsDB Release 4.3.3 User Guide Page 152 © Borrui Data Technology Co. Ltd 2022

rapids > select count(*) from lineitem;
 [1]

 3000

1 row(s) returned (0.22 sec)

Example 2:

This example shows the use of the “IF NOT EXISTS” clause to restrict a bulk import to only those tables
that do not exist.

Bulk import a set of files from the folder “/var/tmp/rapids/tpch_small_files” on RapidsDB Cluster node
“db1”.

Folder /var/tmp/rapids/tpch_small_files:

[rapids@db1 rapids]$ ls tpch_small_files
customer.csv lineitem.csv nation.csv orders.csv part.csv partsupp.csv
region.csv supplier.csv

Drop the existing tables “customer” and “region”, show the existing row count for the “nation” table to
show that the row count does not change after the import, and that only the “customer” and “region”
tables are imported:

rapids > drop table customer;
0 row(s) returned (0.10 sec)
rapids > drop table region;
0 row(s) returned (0.10 sec)
rapids > show tables;
CATALOG_NAME SCHEMA_NAME TABLE_NAME
------------ ----------- ----------
MOXE MOXE LINEITEM
MOXE MOXE NATION
MOXE MOXE ORDERS
MOXE MOXE PART
MOXE MOXE PARTSUPP
MOXE MOXE SUPPLIER
…
24 row(s) returned (0.28 sec)
rapids > select count(*) from nation;
 [1]

 25

RapidsDB Release 4.3.3 User Guide Page 153 © Borrui Data Technology Co. Ltd 2022

IMPORT command with the “IF NOT EXISTS” clause

1 row(s) returned (0.09 sec)
rapids > IMPORT IF NOT EXISTS MOXE.* FROM 'node://db1/tpch_small_files' WITH
GUESS;
0 row(s) returned (0.70 sec)

The “SHOW TABLES” command shows that the “customer” and “region” tables were imported, and the
row count for the “nation” table has not changed, showing that no data was imported into that table:

rapids > show tables;
CATALOG_NAME SCHEMA_NAME TABLE_NAME
------------ ----------- ----------
MOXE MOXE CUSTOMER
MOXE MOXE LINEITEM
MOXE MOXE NATION
MOXE MOXE ORDERS
MOXE MOXE PART
MOXE MOXE PARTSUPP
MOXE MOXE REGION
MOXE MOXE SUPPLIER
…
26 row(s) returned (0.27 sec)
rapids > select count(*) from nation;
 [1]

 25

1 row(s) returned (0.09 sec)

Example 3:

This example shows importing a set of files which were created using the EXPORT command (see
11.12.2):

rapids > EXPORT MOXE.* TO 'node://db1/tpch_small_file_with_headers' WITH
HEADER;

0 row(s) returned (8.33 sec)

Now drop the current tables and then import the files specifying the HEADER and GUESS options:

rapids > drop table moxe.lineitem;
0 row(s) returned (0.19 sec)
rapids > drop table moxe.orders;
0 row(s) returned (0.10 sec)
rapids > drop table moxe.customer;

RapidsDB Release 4.3.3 User Guide Page 154 © Borrui Data Technology Co. Ltd 2022

0 row(s) returned (0.09 sec)
rapids > drop table moxe.supplier;
0 row(s) returned (0.09 sec)
rapids > drop table moxe.part;
0 row(s) returned (0.10 sec)
rapids > drop table moxe.partsupp;
0 row(s) returned (0.11 sec)
rapids > drop table moxe.nation;
0 row(s) returned (0.09 sec)
rapids > drop table moxe.region;
0 row(s) returned (0.09 sec)
rapids > IMPORT MOXE.* FROM 'node://db1/tpch_small_file_with_headers' WITH
HEADER, GUESS;
0 row(s) returned (16.26 sec)
rapids > show tables;
CATALOG_NAME SCHEMA_NAME TABLE_NAME
------------ ----------- ----------
MOXE MOXE CUSTOMER
MOXE MOXE LINEITEM
MOXE MOXE NATION
MOXE MOXE ORDERS
MOXE MOXE PART
MOXE MOXE PARTSUPP
MOXE MOXE REGION
MOXE MOXE SUPPLIER
…
31 row(s) returned (0.27 sec)
rapids > describe table region;
TABLE_NAME COLUMN_NAME DATA_TYPE ORDINAL IS_PARTITION_KEY
IS_NULLABLE PRECISION SCALE
---------- ----------- --------- ------- ---------------- -----
------ --------- -----
REGION 'R_REGIONKEY' INTEGER 0 false
true 64 NULL
REGION 'R_NAME' VARCHAR 1 false
true NULL NULL
REGION 'R_COMMENT' VARCHAR 2 false
true NULL NULL

3 row(s) returned (0.27 sec)

Example 4:

This example shows that when the tables already exist a bulk import operation will append to the
existing tables.

Current row counts:

rapids > select count(*) from customer;

RapidsDB Release 4.3.3 User Guide Page 155 © Borrui Data Technology Co. Ltd 2022

 [1]

 75

1 row(s) returned (0.06 sec)
rapids > select count(*) from lineitem;
 [1]

 3000

1 row(s) returned (0.06 sec)
rapids > select count(*) from nation;
 [1]

 25

1 row(s) returned (0.06 sec)
rapids > select count(*) from orders;
 [1]

 750

1 row(s) returned (0.06 sec)
rapids > select count(*) from part;
 [1]

 100

1 row(s) returned (0.07 sec)
rapids > select count(*) from partsupp;
 [1]

 400

1 row(s) returned (0.06 sec)
rapids > select count(*) from region;
 [1]

 5

1 row(s) returned (0.06 sec)
rapids > select count(*) from supplier;
 [1]

 5

1 row(s) returned (0.05 sec)

RapidsDB Release 4.3.3 User Guide Page 156 © Borrui Data Technology Co. Ltd 2022

In this example the “IF EXISTS” clause is used to only import into those tables that already exist. The
“GUESS” Property is set to FALSE (by default) so that all data will be read as polymorphic strings and
then cast to the data type for each column. The “FILES” option is explicitly stated (although as
mentioned earlier it is not needed because it is the default), and the FILTER option is specified to only
include those files with the suffix “.csv”. The new row counts show that the number of rows in each
table doubled as a result of the bulk import inserting the new data:

rapids > IMPORT IF EXISTS MOXE.* FROM FILES 'node://db1/tpch_small_files'
WITH FILTER='*.csv';
0 row(s) returned (9.94 sec)
rapids > select count(*) from customer;
 [1]

 150

1 row(s) returned (0.06 sec)
rapids > select count(*) from lineitem;
 [1]

 6000

1 row(s) returned (0.06 sec)
rapids > select count(*) from nation;
 [1]

 50

1 row(s) returned (0.06 sec)
rapids > select count(*) from orders;
 [1]

 1500

1 row(s) returned (0.06 sec)
rapids > select count(*) from part;
 [1]

 200

1 row(s) returned (0.05 sec)
rapids > select count(*) from partsupp;
 [1]

 800

1 row(s) returned (0.06 sec)
rapids > select count(*) from region;
 [1]

RapidsDB Release 4.3.3 User Guide Page 157 © Borrui Data Technology Co. Ltd 2022

 10

1 row(s) returned (0.06 sec)
rapids > select count(*) from supplier;
 [1]

 10

1 row(s) returned (0.06 sec)

Example 5:

This command demonstrates the use of the “REPLACE” option to replace the existing data in the tables
(by doing a “TRUNCATE” operation before importing the data) with new data.

Below are the current row counts for the tables:
rapids > select count(*) from customer;
 [1]

 150

1 row(s) returned (0.06 sec)
rapids > select count(*) from lineitem;
 [1]

 6000

1 row(s) returned (0.06 sec)
rapids > select count(*) from nation;
 [1]

 50

1 row(s) returned (0.06 sec)
rapids > select count(*) from orders;
 [1]

 1500

1 row(s) returned (0.06 sec)
rapids > select count(*) from part;
 [1]

 200

1 row(s) returned (0.05 sec)
rapids > select count(*) from partsupp;
 [1]

RapidsDB Release 4.3.3 User Guide Page 158 © Borrui Data Technology Co. Ltd 2022

 800

1 row(s) returned (0.06 sec)
rapids > select count(*) from region;
 [1]

 10

1 row(s) returned (0.06 sec)
rapids > select count(*) from supplier;
 [1]

 10

1 row(s) returned (0.06 sec)
rapids > IMPORT MOXE.* REPLACE FROM 'node://db1/tpch_small_files';
0 row(s) returned (10.13 sec)

Note that the table counts below now reflect a single copy of the data:

rapids > select count(*) from customer;
 [1]

 75

1 row(s) returned (0.06 sec)
rapids > select count(*) from lineitem;
 [1]

 3000

1 row(s) returned (0.06 sec)
rapids > select count(*) from nation;
 [1]

 25

1 row(s) returned (0.06 sec)
rapids > select count(*) from orders;
 [1]

 750

1 row(s) returned (0.06 sec)
rapids > select count(*) from part;
 [1]

RapidsDB Release 4.3.3 User Guide Page 159 © Borrui Data Technology Co. Ltd 2022

 100

1 row(s) returned (0.06 sec)
rapids > select count(*) from partsupp;
 [1]

 400

1 row(s) returned (0.06 sec)
rapids > select count(*) from region;
 [1]

 5

1 row(s) returned (0.06 sec)
rapids > select count(*) from supplier;
 [1]

 5

1 row(s) returned (0.06 sec)

11.10.2 Bulk IMPORT Using FILES Option With FILTER
The FILTER property allows the user to control which files are imported in a wildcard import operation
and, optionally, how table names are created from the names of imported files. The FILTER value is a
character string containing a Java regular expression (a “regex”).

When performing a wildcard import, an IMPEX Connector examines each filename available from the
import source. Only files whose names satisfy the FILTER regex are imported. (For a tutorial on Java
regular expressions, see https://www.oracle.com/technical-resources/articles/java/regex.html)

Example 1:

Bulk import a set of files from the folder “/var/tmp/rapids/tpch_small_files” on RapidsDB Cluster node
“db1”.

Folder /var/tmp/rapids/tpch_small_files:

[rapids@db1 rapids]$ ls tpch_small_files
customer.csv lineitem.csv nation.csv orders.csv part.csv partsupp.csv
region.csv supplier.csv

rapids > show tables;
CATALOG_NAME SCHEMA_NAME TABLE_NAME
------------ ----------- ----------
RAPIDS SYSTEM AUTHENTICATORS
RAPIDS SYSTEM AUTHENTICATOR_CONFIG

RapidsDB Release 4.3.3 User Guide Page 160 © Borrui Data Technology Co. Ltd 2022

RAPIDS SYSTEM CATALOGS
RAPIDS SYSTEM COLUMNS
RAPIDS SYSTEM CONNECTORS
RAPIDS SYSTEM FEDERATIONS
RAPIDS SYSTEM INDEXES
RAPIDS SYSTEM NODES
RAPIDS SYSTEM PATTERN_MAPS
RAPIDS SYSTEM QUERIES
RAPIDS SYSTEM QUERY_STATS
RAPIDS SYSTEM SCHEMAS
RAPIDS SYSTEM SESSIONS
RAPIDS SYSTEM TABLES
RAPIDS SYSTEM TABLE_PROVIDERS
RAPIDS SYSTEM USERNAME_MAPS
RAPIDS SYSTEM USERS
RAPIDS SYSTEM USER_CONFIG

18 row(s) returned (0.22 sec)
rapids > IMPORT MOXE.* FROM 'node://db1/tpch_small_files' WITH
FILTER='*.csv',GUESS;
0 row(s) returned (12.17 sec)

This command imported all the files from folder “/var/tmp/rapids/tpch_small_files” with a file suffix of
“.csv” creating new tables (see “show tables;” output below) of the same names (minus the “.csv” suffix)
in the schema MOXE if they did not already exist and where the column names for any newly created
table were set to “COL1”, “COL2”, etc, and where the data types were imputed from the data in the files
(based on the “GUESS” property being set TRUE (see 11.9.2.5) (see “describe table” output below). If
the tables already existed, the new data would be inserted alongside the existing data.

rapids > show tables;
CATALOG_NAME SCHEMA_NAME TABLE_NAME
------------ ----------- ----------
MOXE MOXE CUSTOMER
MOXE MOXE LINEITEM
MOXE MOXE NATION
MOXE MOXE ORDERS
MOXE MOXE PART
MOXE MOXE PARTSUPP
MOXE MOXE REGION
MOXE MOXE SUPPLIER
RAPIDS SYSTEM AUTHENTICATORS
RAPIDS SYSTEM AUTHENTICATOR_CONFIG
RAPIDS SYSTEM CATALOGS
RAPIDS SYSTEM COLUMNS
RAPIDS SYSTEM CONNECTORS
RAPIDS SYSTEM FEDERATIONS
RAPIDS SYSTEM INDEXES
RAPIDS SYSTEM NODES

RapidsDB Release 4.3.3 User Guide Page 161 © Borrui Data Technology Co. Ltd 2022

RAPIDS SYSTEM PATTERN_MAPS
RAPIDS SYSTEM QUERIES
RAPIDS SYSTEM QUERY_STATS
RAPIDS SYSTEM SCHEMAS
RAPIDS SYSTEM SESSIONS
RAPIDS SYSTEM TABLES
RAPIDS SYSTEM TABLE_PROVIDERS
RAPIDS SYSTEM USERNAME_MAPS
RAPIDS SYSTEM USERS

CATALOG_NAME SCHEMA_NAME TABLE_NAME
------------ ----------- ----------
RAPIDS SYSTEM USER_CONFIG

26 row(s) returned (0.22 sec)
rapids > describe table region;
TABLE_NAME COLUMN_NAME DATA_TYPE ORDINAL IS_PARTITION_KEY
IS_NULLABLE PRECISION SCALE COMMENT PROPERTIES
---------- ----------- --------- ------- ---------------- -------
---- --------- ----- ------- ----------
REGION COL1 INTEGER 0 false
true 64 NULL NULL NULL
REGION COL2 VARCHAR 1 false
true NULL NULL NULL NULL
REGION COL3 VARCHAR 2 false
true NULL NULL NULL NULL

3 row(s) returned (0.20 sec)

Example 2:

Import the file whose name starts with the string “region” (this is the capturing group, see hilited text
below), and create a table of that name. This example uses the same folder as the previous example,
but this time only the “region” table will get imported:

rapids > drop table region;
0 row(s) returned (0.09 sec)
rapids > IMPORT MOXE.* FROM 'node://db1/tpch_small_files' WITH
FILTER='(region).*',GUESS;
0 row(s) returned (0.12 sec)
rapids > select count(*) from region;
 [1]

 5

1 row(s) returned (0.06 sec)

RapidsDB Release 4.3.3 User Guide Page 162 © Borrui Data Technology Co. Ltd 2022

11.10.3 Bulk IMPORT Using FOLDERS Option
When doing a bulk import operation the “FOLDERS” option indicates that the path name specified in the
import reference (see 11.6) refers to a folder, which contains a set of sub-folders to be imported. The
name of each sub-folder is the name of the table where the imported data from the files in the sub-
folder will be written.

Example 1:

This example shows the use of the FOLDERS option to import the data from a set of sub-folders where
each sub-folder corresponds to a table of the same name.

Folder structure under parent folder /var/tmp/rapids/small_tpch:

[rapids@db1 rapids]$ ls /var/tmp/rapids/tpch_small/*
/var/tmp/rapids/tpch_small/customer:
customer.csv

/var/tmp/rapids/tpch_small/lineitem:
lineitem.csv

/var/tmp/rapids/tpch_small/nation:
nation.csv

/var/tmp/rapids/tpch_small/orders:
orders.csv

/var/tmp/rapids/tpch_small/part:
part.csv

/var/tmp/rapids/tpch_small/partsupp:
partsupp.csv

/var/tmp/rapids/tpch_small/region:
region.csv

/var/tmp/rapids/tpch_small/supplier:
supplier.csv:

The bulk import command below is using the “IF NOT EXISTS” clause to only import those tables that do
not currently exist along with the “FOLDERS” option. As the tables are being created, the “GUESS”
Property is set TRUE so that the IMPEX Connector will assign the data types. In this example only the
“lineitem” table will be imported because all of the other tables already exist:

rapids > show tables;
CATALOG_NAME SCHEMA_NAME TABLE_NAME
------------ ----------- ----------
MOXE MOXE CUSTOMER

RapidsDB Release 4.3.3 User Guide Page 163 © Borrui Data Technology Co. Ltd 2022

MOXE MOXE NATION
MOXE MOXE ORDERS
MOXE MOXE PART
MOXE MOXE PARTSUPP
MOXE MOXE REGION
MOXE MOXE SUPPLIER
…

25 row(s) returned (0.22 sec)
rapids > select count(*) from customer;
 [1]

 75

1 row(s) returned (0.06 sec)

rapids > IMPORT IF NOT EXISTS MOXE.* FROM FOLDERS 'node://db1/tpch_small'
WITH GUESS;
0 row(s) returned (10.63 sec)
rapids > show tables;
CATALOG_NAME SCHEMA_NAME TABLE_NAME
------------ ----------- ----------
MOXE MOXE CUSTOMER
MOXE MOXE LINEITEM
MOXE MOXE NATION
MOXE MOXE ORDERS
MOXE MOXE PART
MOXE MOXE PARTSUPP
MOXE MOXE REGION
MOXE MOXE SUPPLIER
…
25 row(s) returned (0.23 sec)

rapids > select count(*) from lineitem;
 [1]

 3000

1 row(s) returned (0.06 sec)
rapids > select count(*) from customer;
 [1]

 75

1 row(s) returned (0.06 sec)

Example 2:

RapidsDB Release 4.3.3 User Guide Page 164 © Borrui Data Technology Co. Ltd 2022

This example shows the use of the “REPLACE” option, where the tables being imported will first be
truncated and then the data inserted.

Current row count for “lineitem” table:

rapids > select count(*) from lineitem;
 [1]

 3000

1 row(s) returned (0.06 sec)

Import command with “REPLACE” option specified. The “GUESS” Property is set to FALSE (by default) so
that all data will be read as polymorphic strings and then cast to the data type for each column:

rapids > IMPORT MOXE.* REPLACE FROM FOLDERS 'node://db1/tpch_small' WITH
GUESS=FALSE;
0 row(s) returned (10.03 sec)

Current row count showing that only one copy of the data is in the table:

rapids > select count(*) from lineitem;
 [1]

 3000

1 row(s) returned (0.06 sec)

Example 3:

This example shows a bulk import where the input files include header records with the column names.

rapids@db1:/var/tmp/rapids$ ls tpch_small_folders_with_headers/*/*
tpch_small_folders_with_headers/CUSTOMER/customer.csv
tpch_small_folders_with_headers/PART/part.csv
tpch_small_folders_with_headers/LINEITEM/lineitem.csv
tpch_small_folders_with_headers/PARTSUPP/partsupp.csv
tpch_small_folders_with_headers/NATION/nation.csv
tpch_small_folders_with_headers/REGION/region.csv
tpch_small_folders_with_headers/ORDERS/orders.csv
tpch_small_folders_with_headers/SUPPLIER/supplier.csv

Below is the file “region.csv” showing the header row:

[rapids@db1 tpch_small_folders_with_headers]$ cat region/REGION.csv
R_REGIONKEY,R_NAME,R_COMMENT
1,UNITED STATES,adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg

RapidsDB Release 4.3.3 User Guide Page 165 © Borrui Data Technology Co. Ltd 2022

2,NORTH AMERICA,aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd
3,EUROPE,dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds
4,SOUTH AMERICA,csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda
5,ASIA,i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

Below is the bulk import command with the “FOLDERS” option set, and the “HEADER” option set to
indicate that each file in a sub-folder includes a header record with the column names:

rapids > drop table customer;
0 row(s) returned (0.10 sec)
rapids > drop table lineitem;
0 row(s) returned (0.10 sec)
rapids > drop table nation;
0 row(s) returned (0.10 sec)
rapids > drop table orders;
0 row(s) returned (0.10 sec)
rapids > drop table part;
0 row(s) returned (0.09 sec)
rapids > drop table partsupp;
0 row(s) returned (0.09 sec)
rapids > drop table region;
0 row(s) returned (0.10 sec)
rapids > drop table supplier;
0 row(s) returned (0.09 sec)
rapids > IMPORT MOXE.* FROM FOLDERS 'node://db1/
tpch_small_folders_with_headers WITH HEADER;
0 row(s) returned (0.32 sec)

The output below shows the table definitions for two of the tables imported, “nation” and “region”,
where you can see that the column names in the header record were used:

rapids > describe table nation;
TABLE_NAME COLUMN_NAME DATA_TYPE ORDINAL IS_PARTITION_KEY
IS_NULLABLE PRECISION SCALE COMMENT PROPERTIES
---------- ----------- --------- ------- ---------------- -------
---- --------- ----- ------- ----------
NATION N_NATIONKEY VARCHAR 0 false
true NULL NULL NULL NULL
NATION N_NAME VARCHAR 1 false
true NULL NULL NULL NULL
NATION N_REGIONKEY VARCHAR 2 false
true NULL NULL NULL NULL
NATION N_COMMENT VARCHAR 3 false
true NULL NULL NULL NULL

4 row(s) returned (0.17 sec)
rapids > describe table region;

RapidsDB Release 4.3.3 User Guide Page 166 © Borrui Data Technology Co. Ltd 2022

TABLE_NAME COLUMN_NAME DATA_TYPE ORDINAL IS_PARTITION_KEY
IS_NULLABLE PRECISION SCALE COMMENT PROPERTIES
---------- ----------- --------- ------- ---------------- -------
---- --------- ----- ------- ----------
REGION R_REGIONKEY VARCHAR 0 false
true NULL NULL NULL NULL
REGION R_NAME VARCHAR 1 false
true NULL NULL NULL NULL
REGION R_COMMENT VARCHAR 2 false
true NULL NULL NULL NULL

3 row(s) returned (0.19 sec)

Example 4:
This example shows an example where an attempt is made to do a bulk import operation where the
target tables are managed by different Connectors, which is not allowed:

Below are the current tables that are managed by the “MOXE” and “MOXE2” Connectors:

rapids > show tables;
CATALOG_NAME SCHEMA_NAME TABLE_NAME
------------ ----------- ----------
MOXE MOXE CUSTOMER
MOXE MOXE LINEITEM
MOXE MOXE NATION
MOXE MOXE ORDERS
MOXE MOXE REGION
MOXE MOXE SUPPLIER
MOXE2 MOXE2 PART
MOXE2 MOXE2 PARTSUPP
…
29 row(s) returned (0.23 sec)

Below is the bulk import command that will attempt to do imports against all of the tables shown above,
which is not allowed because the tables are managed by two different Connectors. The error message
shows one table from each Connector which would have been imported into, which in this example are
the “PART” table managed by the “MOXE2” Connector and “NATION” table managed by the “MOXE”
Connector.

rapids > IMPORT * FROM FOLDERS 'node://db1/tpch_small';
Unexpected Exception:
Wildcard import to multiple Connectors: PART, NATION

11.11 EXPORT Using SELECT
This section covers the exporting of the results of a query to a file or folder.

RapidsDB Release 4.3.3 User Guide Page 167 © Borrui Data Technology Co. Ltd 2022

11.11.1 EXPORT Using SELECT TO a File
This section provides examples for writing the results of a query to a specified file using the “TO” clause
as shown below. In the examples below the hilited text is the export reference (see 11.7):

Example 1:

This example shows exporting the contents of a table, “moxe.region”, to a file “region.csv”, where the
file is located in the folder “/var/tmp/rapids/tpch_small_file_backups” on RapidsDB Cluster node “db1”.

Folder: /var/tmp/rapids/tpch_small_file_backups:

[rapids@db1 rapids]$ ls /var/tmp/rapids/tpch_small_file_backups
[rapids@db1 rapids]$

Query to export the data using the default “EXPORT” IMPEX Connector (see 11.8):

rapids > SELECT * FROM moxe.region TO
'node://db1/tpch_small_file_backups/region.csv';
0 row(s) returned (0.10 sec)

Folder “/var/tmp/rapids/tpch_small_file_backups” after the export, showing that the file has 5 records:

[rapids@db1 rapids]$ ls /var/tmp/rapids/tpch_small_file_backups
region.csv
[rapids@db1 rapids]$ cat /var/tmp/rapids/tpch_small_file_backups/region.csv |
wc -l
5

Example 2:

This example shows that the data being exported will by default be appended to the target.

Current contents of file

[rapids@db1 rapids]$ cat /var/tmp/rapids/tpch_small_file_backups/region.csv |
wc -l
5

rapids > SELECT * FROM moxe.region TO
'node://db1/tpch_small_file_backups/region.csv';
0 row(s) returned (0.10 sec)

RapidsDB Release 4.3.3 User Guide Page 168 © Borrui Data Technology Co. Ltd 2022

New count:
[rapids@db1 rapids]$ cat /var/tmp/rapids/tpch_small_file_backups/region.csv |
wc -l
10

Example 3:

In this example, the “REPLACE” option is used, which will result in the target file getting deleted prior to
writing the results of the query, and then the results of the query will get written to the file. In addition,
the “HEADER” option is used which will result in the first record of the file being a header record which
contains the names of the columns from the result set.

Current contents of file “region.csv”:

[rapids@db1 rapids]$ cat /var/tmp/rapids/tpch_small_file_backups/region.csv
1,UNITED STATES,adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg
2,NORTH AMERICA,aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd
3,EUROPE,dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds
4,SOUTH AMERICA,csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda
5,ASIA,i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt
1,UNITED STATES,adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg
2,NORTH AMERICA,aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd
3,EUROPE,dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds
4,SOUTH AMERICA,csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda
5,ASIA,i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

Export command specifying the “REPLACE” and “HEADER” options:

rapids > SELECT * FROM moxe.region TO REPLACE
'node://db1/tpch_small_file_backups/region.csv' WITH HEADER;
0 row(s) returned (0.08 sec)

Contents of exported file, with a header record with the column names from the result set:

[rapids@db1 rapids]$ cat /var/tmp/rapids/tpch_small_file_backups/region.csv
R_REGIONKEY,R_NAME,R_COMMENT
1,UNITED STATES,adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg
2,NORTH AMERICA,aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd
3,EUROPE,dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds
4,SOUTH AMERICA,csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda
5,ASIA,i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

Example 4:

RapidsDB Release 4.3.3 User Guide Page 169 © Borrui Data Technology Co. Ltd 2022

This is the same as the previous example, except this time the BACKUP Property is set “true” which
results in the “region.csv” file getting moved to a backup folder named
“_.backup.<internal_timestamp>” and then the export of the query results is done.

where <internal_timestamp> is a numerical value for the timestamp when the query results were
generated.

rapids > SELECT * FROM moxe.region TO REPLACE
'node://db1/tpch_small_file_backups/region.csv' WITH HEADER, BACKUP;

0 row(s) returned (0.08 sec)

Target folder with exported file along with backup folder “/_.backup.777214467718270673”, has the
original “region.csv” file before the export was done.

[rapids@db1 tpch_small_file_backups]$ ls
/var/tmp/rapids/tpch_small_file_backups/*
/var/tmp/rapids/tpch_small_file_backups/region.csv

/var/tmp/rapids/tpch_small_file_backups/_.backup.777214467718270673:
region.csv

11.11.2 EXPORT Using SELECT TO a Folder
This section provides examples for writing the results of a query to a specified folder using the “TO
FOLDER” clause as shown below. The query results are written to a file named:

• query_results_<internal_timestamp>.csv

where,

<internal_timestamp> is the timestamp when the query results were generated.

Example 1:

This example uses the “FOLDER” option to write the results of the specified query to the specified
folder, “/var/tmp/rapids/query_results”. The file with the query results will be named
“query.<timestamp>”, where <timestamp> is the timestamp when the query was executed.

Folder: /var/tmp/rapids/query_results

[rapids@db1 rapids]$ ls /var/tmp/rapids/query_results
[rapids@db1 rapids]$

rapids > SELECT * FROM moxe.region TO FOLDER 'node://db1/query_results';
0 row(s) returned (0.08 sec)

RapidsDB Release 4.3.3 User Guide Page 170 © Borrui Data Technology Co. Ltd 2022

Target folder, “/var/tmp/rapids/query_results”, after export:

[rapids@db1 rapids]$ ls /var/tmp/rapids/query_results
query_results.3959867675829689450.csv

[rapids@db1 rapids]$ cat
/var/tmp/rapids/query_results/query_results.3959867675829689450.csv
1,UNITED STATES,adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg
2,NORTH AMERICA,aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd
3,EUROPE,dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds
4,SOUTH AMERICA,csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda
5,ASIA,i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

Example 2:

This example shows a second query results file being written to the same target folder:

Current contents of target folder:

[rapids@db1 query_results]$ ls /var/tmp/rapids/query_results
query_results.2320079842552510970.csv

Export command:

rapids > SELECT * FROM moxe.customer WHERE customer.c_acctbal >0 AND EXISTS
(SELECT * FROM vip_customer WHERE vip_customer.c_custkey =
customer.c_custkey) TO FOLDER 'node://db1/query_results';

0 row(s) returned (0.41 sec)

Contents of target folder with new query results file:

[rapids@db1 query_results]$ ls /var/tmp/rapids/query_results
query_results.1910530767001465758.csv query_results.2320079842552510970.csv

Example 3:

This example shows the use of the “REPLACE” and “BACKUP” options where the existing files (with a
“.csv” suffix) from the specified folder are first moved to a backup folder and then the new query results
files are written:

Current target folder:

[rapids@db1 rapids]$ ls /var/tmp/rapids/query_results
query_results.1500591431418200400.csv query_results.3449950617860697261.csv

RapidsDB Release 4.3.3 User Guide Page 171 © Borrui Data Technology Co. Ltd 2022

Export command with “REPLACE” option set:

rapids > SELECT * FROM moxe.customer WHERE customer.c_acctbal > 0 AND EXISTS
(SELECT * FROM vip_customer WHERE vip_customer.c_custkey =
customer.c_custkey) TO REPLACE FOLDER 'node://db1/query_results' WITH BACKUP;

0 row(s) returned (0.76 sec)

The backup folder will get created in the parent directory of the folder specified in the export reference,
which in this case would be “/var/tmp/rapids”:

[rapids@db1 rapids]$ ls /var/tmp/rapids
_.backup.4636680165345356631 query_results SFSMALL text
tpch_small_backup tpch_small_files
formats SF100 single tpch_small
tpch_small_file_backups tpch_small_with_headers

The contents of the backup folder are the original files prior to the export:

[rapids@db1 rapids]$ ls
/var/tmp/rapids/_.backup.4636680165345356631/query_results

query_results.1500591431418200400.csv query_results.3449950617860697261.csv

Example 4:

This example shows the use of the “REPLACE” option with “BACKUP=false” to first delete all existing files
from the specified folder before writing the new query results file.

Contents of target folder with new query results file:

[rapids@db1 query_results]$ ls /var/tmp/rapids/query_results
query_results.1910530767001465758.csv query_results.2320079842552510970.csv

Contents of the parent directory:

[rapids@db1 /var/tmp/rapids]$ ls /var/tmp/rapids
_.backup.4107715935291356825 SFSMALL tpch_small
tpch_small_files tpch_small_folders_with_headers
query_results text tpch_small_file_backups
tpch_small_file_with_headers

Export command using “REPLACE” option:

rapids > SELECT * FROM moxe.customer WHERE customer.c_acctbal > 0 AND EXISTS
(SELECT * FROM vip_customer WHERE vip_customer.c_custkey =
customer.c_custkey) TO REPLACE FOLDER 'node://db1/query_results';

RapidsDB Release 4.3.3 User Guide Page 172 © Borrui Data Technology Co. Ltd 2022

0 row(s) returned (0.37 sec)

Contents of target folder after export showing that two previous files were deleted:

[rapids@db1 query_results]$ ls /var/tmp/rapids/query_results
query_results.9088214351952178143.csv

No new backup folder was created:

[rapids@db1 /var/tmp/rapids]$ ls /var/tmp/rapids
_.backup.4107715935291356825 SFSMALL tpch_small
tpch_small_files tpch_small_folders_with_headers
query_results text tpch_small_file_backups
tpch_small_file_with_headers

11.12 Bulk EXPORT
The EXPORT statement is used for directly exporting multiple tables in a single request:

bulkReference:

Option Required? Default? Description
bulkReference Yes N/A Specifies the three-level (catalog/schema/table) names

for the table(s) to be exported. Wildcards may be
specified (using asterisk '*') for any of the name
components. If catalog name and/or schema name are
omitted, CURRENT_CATALOG and CURRENT_SCHEMA
are used (if set).

APPEND No Yes Append the exported data to any existing file or folder at
the destination (as specified by the exportReference –
see below). (Note: may not be supported for some
Connectors and/or destinations.)

This is the default behavior

REPLACE No No Delete any existing files with a suffix of “.csv” (when the
“FILES” option is specified in the export reference (see
11.8)) or all the files with a suffix of “.csv” in a sub-folder

RapidsDB Release 4.3.3 User Guide Page 173 © Borrui Data Technology Co. Ltd 2022

(when the “FOLDERS” option is specified in the export
reference (see folder 11.7)) .

If the “BACKUP” Property for the Connector (see 11.4) is
“true” then instead of deleting the files in the folder (or
sub-folder), the files will be moved to a backup folder.

exportReference Yes N/A An Export Reference (see 11.7) identifying the
destination for the exported data.

11.12.1 Backing Up Files/Sub-Folders When Doing a REPLACE
When doing a bulk export operation with the “REPLACE” option (see above), the user is requesting that
the target files for the export (when the export reference is using the “FILES” option, which is the default
- see 11.12.2 for examples), or the files in the target sub-folders when the export reference is using the
“FOLDERS” option (see 11.12.3 for examples), are to be replaced with new copies. In order to allow the
user to recover any replaced files, the IMPEX Connector supports the “BACKUP” Property (see 11.12.2
for examples), which when set to “true” results in the system moving the files to be replaced to a
backup folder so that they can be recovered after the export operation if needed. See 11.12.1.1 for
more information on backup with the “FILES”option, and 11.12.1.2 for more information on backup with
the “FOLDERS” option. By default, all IMPEX Connectors have the “BACKUP” Property set “false” which
means that all bulk export operations where the “REPLACE” option is specified no backup of the existing
files will be done.

11.12.1.1 Backup for FILES option
When doing a backup for the FILES option (BACKUP=true), a backup folder will get created in the parent
directory of the folder specified in the export reference, with the name of the backup folder being:

 _.backup.<epoch timestamp>/<export folder>

where,

<epoch timestamp> is the Unix Epoch timestamp when the export command was executed

<export folder> is the name of the folder specified in the export reference in the bulk export command

All files with a suffix of “.csv” from the folder specified in the export reference in the bulk export
command will be moved to the backup folder.

NOTE: Since the “BACKUP” Property is set “false” by default, no backup of existing files will be
performed when the “REPLACE” option is specified. If needed, the user can change the default setting
for the “BACKUP” Property to “true” to ensure that a backup copy is made:

CREATE CONNECTOR EXPORT_NOBACKUP TYPE IMPEX WITH BACKUP,…;

or, by setting the “BACKUP” Property as part of the bulk export command:

RapidsDB Release 4.3.3 User Guide Page 174 © Borrui Data Technology Co. Ltd 2022

EXPORT MOXE.* TO REPLACE 'node://db1/tpch_small_file_backups' WITH BACKUP, HEADER,
DELIMITER='|', ENCLOSED_BY="'";

See Examples 2 and 3 in section 11.13.2 below for more information.

Example:

This example is using the default “EXPORT” Connector, which for this example is using the default
setting for the “PATH” Property which is “/var/tmp/rapids”.

EXPORT MOXE.* TO REPLACE 'node://db1/tpch_small_file_backups' WITH HEADER, DELIMITER='|',
ENCLOSED_BY="'";

In this example any files with a suffix of “.csv” that are present in the folder specified in the export
reference, which in this example would be “/var/tmp/rapids/tpch_small_backups”, would be moved to
a folder in the parent directory, which in this example would be “/var/tmp/rapids”, where the backup
folder would be named similarly to the following:

 “/var/tmp/rapids/tpch_small_file_backups/_.backup.777214467718270673/ tpch_small_file_backups”

If needed, the user can then recover any needed files from the backup folder.

11.12.1.2 Backup for FOLDERS option
When doing a backup for the FOLDERS option (in the export reference), a backup folder will get created
in each subfolder which holds the export files for each table being exported. The name of the backup
folder will be:

 _.backup.<epoch timestamp>

where,

<epoch timestamp> is the Unix Epoch timestamp when the export command was executed

All files with a suffix of “.csv” from the sub-folder moved to the backup folder. See example below for
more details.

NOTE: Since the “BACKUP” Property is set “false” by default, no backup of existing files will be
performed when the “REPLACE” option is specified. If needed, the user can change the default setting
for the “BACKUP” Property to “true” to ensure that a backup copy is made:

CREATE CONNECTOR EXPORT_NOBACKUP TYPE IMPEX WITH BACKUP,…;

or, by setting the “BACKUP” Property as part of the bulk export command:

rapids > EXPORT MOXE.* TO FOLDERS 'node://db1/tpch_small_backup' WITH HEADER, BACKUP;

See Examples 2 and 3 in section 11.12.3 below for more information.

RapidsDB Release 4.3.3 User Guide Page 175 © Borrui Data Technology Co. Ltd 2022

Example:

This example is using the default “EXPORT” Connector, which for this example is using the default
setting for the “PATH” Property which is “/var/tmp/rapids”. In this example, assume that one of the
tables being exported in named “NATION”.

rapids > EXPORT MOXE.* TO FOLDERS 'node://db1/tpch_small_backup' WITH BACKUP, HEADER;

In this example any files with a suffix of “.csv” that are present in the sub-folder associated with each
table being exported, such as “/var/tmp/rapids/tpch_small_backup/NATION” would be moved to a
backup folder in the sub-folder directory for that table, which in this example would be named similarly
to the following:

 “/var/tmp/rapids/ tpch_small_backup/NATION/_.backup.777214467718270673/”

If needed, the user can then recover any needed files from any of the backup folders.

11.12.2 Bulk EXPORT Using FILES Option
The “FILES” option for a bulk export indicates that each table should be written out to the specified
folder with name <table name>.csv.

Example 1:

This is an example of a simple bulk export where all of the tables from the schema “MOXE” are to be
exported to the folder /var/tmp/rapids/tpch_small_file_backups, with each file having a header record
with the column names.

Current contents of folder /var/tmp/rapids/tpch_small_file_backups:

[rapids@db1 tpch_small_file_backups]$ ls
/var/tmp/rapids/tpch_small_file_backups
AAREADme.txt

Tables to be exported:

rapids > show tables;
CATALOG_NAME SCHEMA_NAME TABLE_NAME
------------ ----------- ----------
MOXE MOXE CUSTOMER
MOXE MOXE LINEITEM
MOXE MOXE NATION
MOXE MOXE ORDERS
MOXE MOXE PART
MOXE MOXE PARTSUPP
MOXE MOXE REGION
MOXE MOXE SUPPLIER
MOXE MOXE VIP_CUSTOMER

RapidsDB Release 4.3.3 User Guide Page 176 © Borrui Data Technology Co. Ltd 2022

Export command. The “FILES” option is not required because it is the default. The “HEADER” property
is set to indicate that a header record is to be written for each exported table, and the “DELIMITER”
property is set to the semicolon character and the “ENCLOSED_BY” property is set to the single quote
character:

rapids > EXPORT MOXE.* TO 'node://db1/tpch_small_file_backups' WITH HEADER,
DELIMITER=';', ENCLOSED_BY="'";
0 row(s) returned (9.43 sec)

Folder after the export showing the exported tables:

[rapids@db1 tpch_small_file_backups]$ ls
AAREADME.txt CUSTOMER.csv LINEITEM.csv NATION.csv ORDERS.csv PART.csv
PARTSUPP.csv REGION.csv SUPPLIER.csv VIP_CUSTOMER.csv

Example of header record in one of the files, along with the field delimiter being set to the semicolon
character and the enclosed_by character being set to single quote. Note that some of the varchar fields
are enclosed in single quotes, and this is because those fields include the delimiter character which is a
semicolon. The only time that character fields are enclosed is when they contain the delimiter
character.:

[rapids@db1 tpch_small_file_backups]$ cat NATION.csv
N_NATIONKEY;N_NAME;N_REGIONKEY;N_COMMENT
1;UNITED STATES;1;adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg
2;CANADA;2;aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd
3;MEXICO;2;94iuakdjvoakdjvoadjogadhgkjagkjazdgkjzgd
4;GERMANY;3;zoidhgdjhtehgkhgnkjsdzdkjg
5;FRANCE;3;odijzoietjoizejtoizejgioazgkjan
6;ENGLAND;3;oaidjfozdjfoizjeofjelkjtkljlkjg
7;NORWAY;3;oaieurlajelgtkjalkgjlkajsgl
8;DENMARK;3;zokjkvlzkjdlgfjzdlkgjlakdjglkdjglkajglkjglkjdglkjfdlhk
9;SWEDEN;3;zkjdhfkjdvmn mv bmz lkfnvkzdfng
10;ITALY;3;'dkjlz;f;lsfkh;lakhr;lajlfkgakjdba'
11;SWITZERLAND;3;'ozkdjvdjtkjaldg;lg;lkfh;lks;flhadfbjfhd'
12;POLAND;3;kdjlkzdjtljelktjlzjlkrjlkdhkbafjebe
13;RUSSIA;3;'zflkzdjglzjglzdkg;lrdkh;ldfkh;dflkh'
14;CHILE;4;'akdjflkjd;ljfal;djgsdjglkdsfjgkjasjfbjha'
15;PERU;4;'ldkjflaje;ajlgdjzlkdgkzjdhfzbsjdhfb'
16;ARGENTINA;4;dkjzkldjlkgjzldgjkhghfjgfsg
17;BOLIVIA;4;alkjdflkajdljgaljglkajgljadfg
18;BRAZIL;4;jadalkjakdjlkjakgjalkfjglkajfgjalfg
19;GUYANA;4;zlkjdzkjdlkgjaldkgjlakjdglkajdglkjdfkgjlsdfkjhlksjfh
20;CHINA;5;lkdjaljdlkajdgkjafghskfdjghksjffhkjslkh
21;JAPAN;5;'skfjg;lskjfhksjkhjsjhakjbgbgbs'
22;INDIA;5;'kadjflkajdlkjgs;lkfjglskfjglksfjhks'

RapidsDB Release 4.3.3 User Guide Page 177 © Borrui Data Technology Co. Ltd 2022

23;PHILLIPINES;5;'aldkjflkadjflkjadvjz;lvlkdlgjakjdg'
24;THAILAND;5;aldkjflakdjglkajgflkfjgkjsflkjgalkjfg
25;SINGAPORE;5;dlkjalkdjflkajdlkznvknzkdfglkzjdfhglkjflkh

Example 2:

This example shows the use of the “REPLACE” option to replace the existing files in the specified folder,
(with the default “BACKUP” option set “false”), which will result in the existing files in the target folder
getting deleted prior to the export of the tables.

Current contents of target folder:

[rapids@db1 tpch_small_file_backups]$ ls -l
/var/tmp/rapids/tpch_small_file_backups
total 145032
-rw-rw-r--. 1 rapids rapids 20 Sep 20 20:21 AAREADME.txt
-rw-rw-r--. 1 rapids rapids 4516901 Sep 20 20:52 CUSTOMER.csv
-rw-rw-r--. 1 rapids rapids 125657939 Sep 20 20:52 LINEITEM.csv
-rw-rw-r--. 1 rapids rapids 85 Sep 20 20:52 MYTABLE.csv
-rw-rw-r--. 1 rapids rapids 2348 Sep 20 20:52 NATION.csv
-rw-rw-r--. 1 rapids rapids 7550516 Sep 20 20:52 ORDERS.csv
-rw-rw-r--. 1 rapids rapids 4526668 Sep 20 20:52 PART.csv
-rw-rw-r--. 1 rapids rapids 4739265 Sep 20 20:52 PARTSUPP.csv
-rw-rw-r--. 1 rapids rapids 82 Sep 20 20:52 REGION2.csv
-rw-rw-r--. 1 rapids rapids 439 Sep 20 20:52 REGION.csv
-rw-rw-r--. 1 rapids rapids 3344 Sep 20 20:52 SPECIAL_CUSTOMER.csv
-rw-rw-r--. 1 rapids rapids 1478162 Sep 20 20:52 SUPPLIER.csv
-rw-rw-r--. 1 rapids rapids 4601 Sep 20 20:52 VIP_CUSTOMER.csv

Export command with “REPLACE” option using the default “BACKUP” Property (=”false”):

rapids > EXPORT MOXE.* TO REPLACE 'node://db1/tpch_small_file_backups' WITH
HEADER, DELIMITER='|', ENCLOSED_BY="'";

0 row(s) returned (9.06 sec)

Contents of target folder after the export showing new copies of the exported files and no backups:

[rapids@db1 tpch_small_file_backups]$ ls -l
/var/tmp/rapids/tpch_small_file_backups
total 145032
-rw-rw-r--. 1 rapids rapids 20 Sep 20 20:21 AAREADME.txt
-rw-rw-r--. 1 rapids rapids 4516901 Sep 20 21:12 CUSTOMER.csv
-rw-rw-r--. 1 rapids rapids 125657939 Sep 20 21:12 LINEITEM.csv
-rw-rw-r--. 1 rapids rapids 85 Sep 20 21:12 MYTABLE.csv
-rw-rw-r--. 1 rapids rapids 2348 Sep 20 21:12 NATION.csv
-rw-rw-r--. 1 rapids rapids 7550516 Sep 20 21:12 ORDERS.csv
-rw-rw-r--. 1 rapids rapids 4526668 Sep 20 21:12 PART.csv

RapidsDB Release 4.3.3 User Guide Page 178 © Borrui Data Technology Co. Ltd 2022

-rw-rw-r--. 1 rapids rapids 4739265 Sep 20 21:12 PARTSUPP.csv
-rw-rw-r--. 1 rapids rapids 82 Sep 20 21:12 REGION2.csv
-rw-rw-r--. 1 rapids rapids 439 Sep 20 21:12 REGION.csv
-rw-rw-r--. 1 rapids rapids 3344 Sep 20 21:12 SPECIAL_CUSTOMER.csv
-rw-rw-r--. 1 rapids rapids 1478162 Sep 20 21:12 SUPPLIER.csv
-rw-rw-r--. 1 rapids rapids 4601 Sep 20 21:12 VIP_CUSTOMER.csv

Example 3:

This example shows the use of the “REPLACE” option to replace the existing files (ending in “.csv”) in the
specified folder, with the “BACKUP” option set to “true”, which will result in the existing files being
moved to a backup folder so that they can be recovered in the future if needed (see 11.12.1) for more
information).

Current backup folder:

[rapids@db1 tpch_small_file_backups]$ ls
/var/tmp/rapids/tpch_small_file_backups
total 145032
-rw-rw-r--. 1 rapids rapids 20 Sep 20 20:21 AAREADME.txt
-rw-rw-r--. 1 rapids rapids 4516901 Sep 20 20:46 CUSTOMER.csv
-rw-rw-r--. 1 rapids rapids 125657939 Sep 20 20:46 LINEITEM.csv
-rw-rw-r--. 1 rapids rapids 85 Sep 20 20:46 MYTABLE.csv
-rw-rw-r--. 1 rapids rapids 2348 Sep 20 20:46 NATION.csv
-rw-rw-r--. 1 rapids rapids 7550516 Sep 20 20:46 ORDERS.csv
-rw-rw-r--. 1 rapids rapids 4526668 Sep 20 20:46 PART.csv
-rw-rw-r--. 1 rapids rapids 4739265 Sep 20 20:46 PARTSUPP.csv
-rw-rw-r--. 1 rapids rapids 82 Sep 20 20:46 REGION2.csv
-rw-rw-r--. 1 rapids rapids 439 Sep 20 20:46 REGION.csv
-rw-rw-r--. 1 rapids rapids 3344 Sep 20 20:46 SPECIAL_CUSTOMER.csv
-rw-rw-r--. 1 rapids rapids 1478162 Sep 20 20:46 SUPPLIER.csv
-rw-rw-r--. 1 rapids rapids 4601 Sep 20 20:46 VIP_CUSTOMER.csv

Bulk export command with the “REPLACE” option specified, and the “BACKUP” Property set:

rapids > EXPORT MOXE.* TO REPLACE 'node://db1/tpch_small_file_backups' WITH
BACKUP, HEADER, DELIMITER='|', ENCLOSED_BY="'";
0 row(s) returned (9.29 sec)

Contents of target folder after the export. Note that there are new copies of the files for the exported
tables, and that there is a backup folder, “_.backup.8186816724347336840” that contains the original
files:

[rapids@db1 tpch_small_file_backups]$ ls -l
/var/tmp/rapids/tpch_small_file_backups
total 145032

RapidsDB Release 4.3.3 User Guide Page 179 © Borrui Data Technology Co. Ltd 2022

drwx------. 2 rapids rapids 246 Sep 20 20:52
_.backup.8186816724347336840
-rw-rw-r--. 1 rapids rapids 20 Sep 20 20:21 AAREADME.txt
-rw-rw-r--. 1 rapids rapids 4516901 Sep 20 20:52 CUSTOMER.csv
-rw-rw-r--. 1 rapids rapids 125657939 Sep 20 20:52 LINEITEM.csv
-rw-rw-r--. 1 rapids rapids 85 Sep 20 20:52 MYTABLE.csv
-rw-rw-r--. 1 rapids rapids 2348 Sep 20 20:52 NATION.csv
-rw-rw-r--. 1 rapids rapids 7550516 Sep 20 20:52 ORDERS.csv
-rw-rw-r--. 1 rapids rapids 4526668 Sep 20 20:52 PART.csv
-rw-rw-r--. 1 rapids rapids 4739265 Sep 20 20:52 PARTSUPP.csv
-rw-rw-r--. 1 rapids rapids 439 Sep 20 20:52 REGION.csv
-rw-rw-r--. 1 rapids rapids 1478162 Sep 20 20:52 SUPPLIER.csv
-rw-rw-r--. 1 rapids rapids 4601 Sep 20 20:52 VIP_CUSTOMER.csv

Here is the backup folder with the original files:

[rapids@db1 tpch_small_file_backups]$ ls -l
/var/tmp/rapids/tpch_small_file_backups/_.backup.8186816724347336840
total 145032
-rw-rw-r--. 1 rapids rapids 4516901 Sep 20 20:46 CUSTOMER.csv
-rw-rw-r--. 1 rapids rapids 125657939 Sep 20 20:46 LINEITEM.csv
-rw-rw-r--. 1 rapids rapids 2348 Sep 20 20:46 NATION.csv
-rw-rw-r--. 1 rapids rapids 7550516 Sep 20 20:46 ORDERS.csv
-rw-rw-r--. 1 rapids rapids 4526668 Sep 20 20:46 PART.csv
-rw-rw-r--. 1 rapids rapids 4739265 Sep 20 20:46 PARTSUPP.csv
-rw-rw-r--. 1 rapids rapids 439 Sep 20 20:46 REGION.csv
-rw-rw-r--. 1 rapids rapids 1478162 Sep 20 20:46 SUPPLIER.csv
-rw-rw-r--. 1 rapids rapids 4601 Sep 20 20:46 VIP_CUSTOMER.csv

11.12.3 Bulk EXPORT Using FOLDERS Option
The “FOLDERS” option for a bulk export indicates that each table should be written out in a file in a
separate sub-folder (under the folder name specified in the export reference) of the same name. The
name of the file for the exported table will be: <table name>>internal timestamp>.csv, for example
“SUPPLIER.5674361502309579557.csv.”

The following examples all assume that the schema “MOXE” has the following tables: CUSTOMER,
LINEITEM, NATION, ORDERS, PART, PARTSUPP, REGION, SUPPLIER, and VIP_CUSTOMER

Example 1:

This is an example of a bulk export where all of the tables from the schema “MOXE” are to be exported
to sub-folders under the folder “/var/tmp/rapids/tpch_small_backup”, with each export file having a
header record with the column names.

Current contents of target folder:

[rapids@db1 rapids]$ ls /var/tmp/rapids/tpch_small_folder_backup

RapidsDB Release 4.3.3 User Guide Page 180 © Borrui Data Technology Co. Ltd 2022

[rapids@db1 rapids]$

Export command with the “FOLDERS” option

rapids > EXPORT MOXE.* TO FOLDERS 'node://db1/tpch_small_folder_backup' WITH
HEADER;
0 row(s) returned (9.43 sec)

Contents of target folder after export:

[rapids@db1 rapids]$ ls /var/tmp/rapids/tpch_small_folder_backup/*
/var/tmp/rapids/tpch_small_folder_backup/CUSTOMER:
customer.7842865417157613111.csv

/var/tmp/rapids/tpch_small_folder_backup/LINEITEM:
lineitem.5733617788919186767.csv

/var/tmp/rapids/tpch_small_folder_backup/NATION:
nation.1554588814455789912.csv

/var/tmp/rapids/tpch_small_folder_backup/ORDERS:
orders.6236921272679811628.csv

/var/tmp/rapids/tpch_small_folder_backup/PART:
part.5359586359844433055.csv

/var/tmp/rapids/tpch_small_folder_backup/PARTSUPP:
partsupp.9185786343941211758.csv

/var/tmp/rapids/tpch_small_folder_backup/REGION:
region.7738184263372301381.csv

/var/tmp/rapids/tpch_small_folder_backup/SUPPLIER:
supplier.4865294074583220638.csv

/var/tmp/rapids/tpch_small_folder_backup/VIP_CUSTOMER:
vip_customer.6098121580374720698.csv

Example 2:
This example shows the use of the “REPLACE” option which will result in the existing files (ending in
“.csv”) in the sub-folder for each table being deleted prior to the export being executed.

Below is the current contents of one of the sub-folders for one of the tables (MOXE.LINEITEM)being
exported:

[rapids@db1 rapids]$ ls /var/tmp/rapids/tpch_small_folder_backup/LINEITEM
lineitem.6482498489887946522.csv

RapidsDB Release 4.3.3 User Guide Page 181 © Borrui Data Technology Co. Ltd 2022

Export command with the “REPLACE” option :
rapids > EXPORT MOXE.* TO REPLACE FOLDERS
'node://db1/tpch_small_folder_backup' WITH HEADER;

0 row(s) returned (9.06 sec)

Contents of the target folder showing the sub-folders for each table, and then the contents of the sub-
folder for the “LINEITEM” table showing that a new copy of the exported file has been created, with no
backup folder getting created:

[rapids@db1 tpch_small_folder_backup]$ ls
CUSTOMER LINEITEM NATION ORDERS PART PARTSUPP REGION SUPPLIER
VIP_CUSTOMER
[rapids@db1 tpch_small_backup]$ ls LINEITEM
lineitem.7547050142483739703.csv

Example 3:

This example again shows the use of the “REPLACE” option to replace the existing files (ending in “.csv”)
in the sub-folder for each table, but in this example the “BACKUP” option is set which results in the
existing files being moved to a backup folder so that they can be recovered in the future if needed (see
11.13.1.2 for more information). The backup folder will be created in the folder specified in the export
reference.

Below is the current contents of one of the sub-folders for one of the tables (MOXE.LINEITEM)being
exported:

[rapids@db1 rapids]$ ls /var/tmp/rapids/tpch_small_folder_backup/LINEITEM
lineitem.6260590681045515755.csv

Export command specifying the “REPLACE” option:

rapids > EXPORT MOXE.* TO REPLACE FOLDERS
'node://db1/tpch_small_folder_backup' WITH HEADER, BACKUP;

0 row(s) returned (9.06 sec)

Contents of sub-folder after the export showing the new export file:

[rapids@db1 rapids]$ ls /var/tmp/rapids/tpch_small_backup/LINEITEM
lineitem.6482498489887946522.csv

Contents of folder, “/var/tmp/rapids/tpch_small_backup”, specified in the export reference, showing
the backup folder that was created, “_.backup.6582410041113988538”:

RapidsDB Release 4.3.3 User Guide Page 182 © Borrui Data Technology Co. Ltd 2022

[rapids@db1 rapids]$ ls /var/tmp/rapids/tpch_small_folder_backup
_.backup.6582410041113988538 CUSTOMER LINEITEM NATION ORDERS PART
PARTSUPP REGION SUPPLIER VIP_CUSTOMER

Contents of backup folder showing all of the original sub-folders:

[rapids@db1 rapids]$ ls
/var/tmp/rapids/tpch_small_folder_backup/_.backup.6582410041113988538
CUSTOMER LINEITEM NATION ORDERS PART PARTSUPP REGION SUPPLIER
VIP_CUSTOMER

Sample contents of the backup LINEITEM sub-folder from the backup showing that it contains the
original export file for the “LINEITEM” table:

[rapids@db1 rapids]$ ls
/var/tmp/rapids/tpch_small_folder_backup/_.backup.6582410041113988538/LINEITE
M
lineitem.6260590681045515755.csv

11.13 Error Handling

11.13.1 ERROR_PATH
The “ERROR_PATH” Property (see 11.4) specifies the fully qualified path name to use as the base path
for the error files generated if an import operation fails. By default, the ERROR_PATH is set to
“/var/tmp/rapids_errors”. For each failed import, a sub-folder will be created in the folder specified by
the “ERROR_PATH”:

The sub-folder name is of the form:

 SSN_<session number>_<node name>_<query number>

where,

<session number> is the session number for the query that failed

<node name> is the name of the RapidsDB cluster node where the query was submitted

<query number> is the query number for that session

For example, “SSN_2_DB1_67” indicates that this error occurred on session #2 on the RapidsDB Cluster
node “DB1” and it was query #67.

The sub-folder will include two files:

RapidsDB Release 4.3.3 User Guide Page 183 © Borrui Data Technology Co. Ltd 2022

1 A log file containing details on the conversion errors, one line per error. The format for the
log file name is:

<source>-messages.log

where,

<source> is used to identify the source file or folder with the errors, and has the format:

node___<node name>_<path name>-messages.log

where,

<node name> is the RapidsDB Cluster node name where the input file or folder resides

<path name> is the path name to the source file or folder

Example:

rapids > insert into region_b SELECT * FROM (csv_header::
'node://db1/SFSMALL/regionPipe.csv');

Error: import errors (5) in /var/tmp/rapids_errors/SSN_1_DB1_234

In this example, the errors occurred in the input file
“/var/tmp/rapids/SFSMALL/regionPipe.csv” on RapidsDB cluster node “db1”, and the
details for the errors will be in the folder “/var/tmp/rapids_errors/SSN_1_DB1_234” on
the same node as the input file, which is RapidsDB cluster node “db1”. The log file will be
the file
/var/tmp/rapids_errors/SSN_1_DB1_234/node___db1_var_tmp_rapids_SFSMALL_regionP
ipe_csv-messages.log:

[rapids@db1 tpch_small_backup]$ cat
/var/tmp/rapids_errors/SSN_1_DB1_234/node___db1_var_tmp_rapids_SFSM
ALL_regionPipe_csv-messages.log
segment 0 line 1: java.lang.NumberFormatException: For input
string: "UNITED STATES"
segment 0 line 2: java.lang.NumberFormatException: For input
string: "NORTH AMERICA,aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd"
segment 0 line 3: java.lang.NumberFormatException: For input
string: "EUROPE"
segment 0 line 4: java.lang.NumberFormatException: For input
string: "SOUTH AMERICA"
segment 0 line 5: java.lang.NumberFormatException: For input
string: "ASIA"

RapidsDB Release 4.3.3 User Guide Page 184 © Borrui Data Technology Co. Ltd 2022

2 A data file containing the records with the conversion errors, where the records in the data
file match up with the error line in the log file described in the previous section. The
format for the data file name follows the same format as for the log file:

<source>-records.csv

where,

<source> is used to identify the source file or folder with the errors, and has the format:

node___<node name>_<path name>-records.csv

where,

<node name> is the RapidsDB Cluster node name where the file or folder resides

<path name> is the path name to the source file or folder

Example:

From the previous example, the data file with the error records will be the file:
“/var/tmp/rapids_errors/SSN_1_DB1_234/node___db1_var_tmp_rapids_SFSMALL_region
Pipe_csv-records.csv”:

[rapids@db1 tpch_small_backup]$ cat
/var/tmp/rapids_errors/SSN_1_DB1_234/node___db1_var_tmp_rapids_SFSM
ALL_regionPipe_csv-records.csv
1|UNITED
STATES|adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg
2|NORTH AMERICA,aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd
3|EUROPE|dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds
4|SOUTH AMERICA|csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda
5|ASIA|i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

See 11.13.3 for more examples

The default for the “ERROR_PATH” is “/var/tmp/rapids_errors”, but it can be changed either at the
Connector level or as part of the import command:

rapids > create connector csv_error type impex with
error_path='/data/errors';
0 row(s) returned (2.31 sec)

rapids > insert into bad2 select col1, col2 from
('node://db1/text/lead_trail_blanks.csv' WITH
ERROR_PATH='/var/tmp/dcerrors');
Unexpected Exception:
import errors (6) in /var/tmp/dcerrors/SSN_2_DB1_76

RapidsDB Release 4.3.3 User Guide Page 185 © Borrui Data Technology Co. Ltd 2022

11.13.2 ERROR_LIMIT
The “ERROR_LIMIT” Property specifies the maximum number of allowable errors for an import. Once
the limit is reached the import operation will terminate. By default, the limit is set to ten. The possible
values for ERROR_LIMIT are:

• -1 No limit, the import will continue regardless of the number of errors
• 0 The import will terminate on the first error
• >0 The import will terminate after the specified number

Example 1:

This example shows an import hitting the default limit:

rapids > create table moxe.nation_a(c1 integer, c2 integer, c3 integer, c4
integer);
0 row(s) returned (0.12 sec)
rapids > insert into moxe.nation_a SELECT * FROM
('node://db1/SFSMALL/nation.csv');
Unexpected Exception:
Error limit (10) reached:
/var/tmp/rapids_errors/SSN_1_DB1_241/node___db1_var_tmp_rapids_SFSMALL_nation
_csv-messages.log
Example 2:

This example shows the effect of increasing the limit:

rapids > insert into moxe.nation_a SELECT * FROM
('node://db1/SFSMALL/nation.csv' WITH ERROR_LIMIT=100);

Error: import errors (25) in /var/tmp/rapids_errors/SSN_1_DB1_242

11.13.3 Data Conversion Errors
As described in the section 11.13.1, when data conversion errors happen, a sub-folder will be created in
the folder referenced by the “ERROR_PATH” property, with two files created in that sub-folder, a “*.log”
log file with details of the errors and a “*.csv” file with the errant data records.

The following examples show how the errors are reported for an INSERT … SELECT, bulk import using the
“FILES” option and a bulk insert using the “FOLDERS” option.

Example 1 INSERT … SELECT:

In this example, an attempt was made to insert a text field into an integer column:

rapids > create table moxe.REGION_B (
 > r_regionkey integer NOT NULL,
 > r_id integer,
 > r_comment varchar(152)
 >) PARTITION(r_regionkey);

RapidsDB Release 4.3.3 User Guide Page 186 © Borrui Data Technology Co. Ltd 2022

0 row(s) returned (0.10 sec)

rapids > insert into region_b SELECT * FROM (csv_header::
'node://db1/SFSMALL/regionPipe.csv');
Error: import errors (5) in /var/tmp/rapids_errors/SSN_1_DB1_243

The error message above indicates that the log file containing a description of the errors will be in the
log file:
 “/var/tmp/rapids_errors/SSN_1_DB1_243/ node___db1_var_tmp_rapids_SFSMALL_regionPipe_csv-
messages.log”

[rapids@db1 SSN_1_DB1_243]$ cat
/var/tmp/rapids_errors/SSN_1_DB1_243/node___db1_var_tmp_rapids_SFSMALL_region
Pipe_csv-messages.log
segment 0 line 1: java.lang.NumberFormatException: For input string: "UNITED
STATES"
segment 0 line 2: java.lang.NumberFormatException: For input string: "NORTH
AMERICA,aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd"
segment 0 line 3: java.lang.NumberFormatException: For input string: "EUROPE"
segment 0 line 4: java.lang.NumberFormatException: For input string: "SOUTH
AMERICA"
segment 0 line 5: java.lang.NumberFormatException: For input string: "ASIA"

The data associated with the error messages will be in the file
“/var/tmp/rapids_errors/SSN_1_DB1_243/node___db1_var_tmp_rapids_SFSMALL_regionPipe_csv-
records.csv”

[rapids@db1 SSN_1_DB1_243]$ cat
/var/tmp/rapids_errors/SSN_1_DB1_243/node___db1_var_tmp_rapids_SFSMALL_region
Pipe_csv-records.csv
1|UNITED STATES|adknladnganfbmanlgnalkfnglkajglkafjglksjfglkajfgkjadg
2|NORTH AMERICA|aldkjlakngkjangkjnfkngakldflkadjlkajdlkajd
3|EUROPE|dxldgkzcsoisjoicnkjebfjhqwgrygwuihvokjdgojdvpds
4|SOUTH AMERICA|csvbdcavbscdbvacdhvjhxdkgnlkglfglksdnja shc asbvda
5|ASIA|i4y5qiuyrqghrushfxhghirohtiuehtaytaiuerytaiurt

The log file is indicating that there were conversion errors in the second data fields, where the data was
a text string whereas the table was expecting an integer.

Example 2 Bulk IMPORT with “FILES” option:

This example shows how errors are reported when doing a bulk import using the “FILES” option:

rapids > IMPORT MOXE.* REPLACE FROM 'node://db1/tpch_small_files';
Unexpected Exception:
Import partially succeeded: succeeded: 7, failed: 1

RapidsDB Release 4.3.3 User Guide Page 187 © Borrui Data Technology Co. Ltd 2022

 Error limit (10) reached:
/var/tmp/rapids_errors/SSN_3_DB1_68/node___db1_var_tmp_rapids_tpch_small_file
s_nation_csv-messages.log

The error message above indicates that the log file containing a description of the errors will be in the
file:
“/var/tmp/rapids_errors/SSN_3_DB1_68/node___db1_var_tmp_rapids_tpch_small_files_nation_csv-
messages.log”

Below is the content of the log file:

[rapids@db1 rapids]$ cat
/var/tmp/rapids_errors/SSN_3_DB1_68/node___db1_var_tmp_rapids_tpch_small_file
s_nation_csv-messages.log
segment 0 line 1: com.rapidsdata.impex.ImpexParseException: Invalid
characters between delimiter (,) and enclosed_by (") column: 1, integer
segment 0 line 2: com.rapidsdata.impex.ImpexParseException: Invalid
characters between delimiter (,) and enclosed_by (") column: 1, integer
segment 0 line 3: com.rapidsdata.impex.ImpexParseException: Invalid
characters between delimiter (,) and enclosed_by (") column: 1, integer
segment 0 line 4: com.rapidsdata.impex.ImpexParseException: Invalid
characters between delimiter (,) and enclosed_by (") column: 1, integer
segment 0 line 5: com.rapidsdata.impex.ImpexParseException: Invalid
characters between delimiter (,) and enclosed_by (") column: 1, integer
segment 0 line 6: com.rapidsdata.impex.ImpexParseException: Invalid
characters between delimiter (,) and enclosed_by (") column: 1, integer
segment 0 line 7: com.rapidsdata.impex.ImpexParseException: Invalid
characters between delimiter (,) and enclosed_by (") column: 1, integer
segment 0 line 8: com.rapidsdata.impex.ImpexParseException: Invalid
characters between delimiter (,) and enclosed_by (") column: 1, integer
segment 0 line 9: com.rapidsdata.impex.ImpexParseException: Invalid
characters between delimiter (,) and enclosed_by (") column: 1, integer
segment 0 line 10: com.rapidsdata.impex.ImpexParseException: Invalid
characters between delimiter (,) and enclosed_by (") column: 1, integer

NOTE: The column number shown is zero-based, and so the error refers to the second field in the
input data. In the above example, the input data with the reported error will be the second data field
of the input record (column 1).

The data associated with the error messages will be in the file:
/var/tmp/rapids_errors/SSN_3_DB1_68/node___db1_var_tmp_rapids_tpch_small_files_nation_csv-
records.csv

Contents of the above file, with the data fields in error hilited:

RapidsDB Release 4.3.3 User Guide Page 188 © Borrui Data Technology Co. Ltd 2022

[rapids@db1 rapids]$ cat
/var/tmp/rapids_errors/SSN_3_DB1_68/node___db1_var_tmp_rapids_tpch_small_file
s_nation_csv-records.csv
0,ALGERIA,0, haggle. carefully final deposits detect slyly agai
7,GERMANY,3,l platelets. regular accounts x-ray: unusual\, regular acco
24,UNITED STATES,1,y final packages. slow foxes cajole quickly. quickly
silent platelets breach ironic accounts. unusual pinto be
3,CANADA,1,eas hang ironic\, silent packages. slyly regular packages are
furiously over the tithes. fluffily bold
14,KENYA,0, pending excuses haggle furiously deposits. pending\, express
pinto beans wake fluffily past t
20,SAUDI ARABIA,4,ts. silent requests haggle. closely express packages sleep
across the blithely
2,BRAZIL,1,y alongside of the pending deposits. carefully special packages
are about the ironic forges. slyly special
22,RUSSIA,3, requests against the platelets use never according to the
quickly regular pint
5,ETHIOPIA,0,ven packages wake quickly. regu
12,JAPAN,2,ously. final\, express gifts cajole a

Example 3 Bulk IMPORT with “FOLDERS” option:
This example shows how errors are reported when doing a bulk import using the “FILES” option:

rapids > import MOXE.* FROM FOLDERS 'node://db1/tpch_small';
Unexpected Exception:
Import partially succeeded: succeeded: 7, failed: 1
 Error limit (10) reached:
/var/tmp/rapids_errors/SSN_3_DB1_69/node___db1_var_tmp_rapids_tpch_small_nati
on-messages.log

The error message above indicates that the log file containing a description of the errors will be in the
file:
“/var/tmp/rapids_errors/SSN_3_DB1_69/node___db1_var_tmp_rapids_tpch_small_nation-
messages.log”
and the associated data file will be in the file:
“/var/tmp/rapids_errors/SSN_3_DB1_69/node___db1_var_tmp_rapids_tpch_small_nation-records.csv”

As for the “FILES” option, the column number reported in the log file will be zero-based, for example:
 segment 0 line 1: com.rapidsdata.impex.ImpexParseException: Invalid
characters between delimiter (,) and enclosed_by (") column: 1, integer

Would refer to the second data field in the input data.

11.13.4 Mismatched Number of Fields and Columns on INSERT
The following error will be returned when the number of fields in the data file being imported does not
match the number of columns in the target table:

RapidsDB Release 4.3.3 User Guide Page 189 © Borrui Data Technology Co. Ltd 2022

 Unexpected Exception:
Line 1 position 1: Column lists differ, x column(s) vs y column(s).

where, x is the number of columns in the import file and y is the number of columns in the target table

Example:
Target table with 3 columns:
rapids > create table moxe.bad1(c1 integer, c2 integer, c3 integer);
0 row(s) returned (0.09 sec)
rapids > insert into bad1 select * from
('node://db1/text/lead_trail_blanks.csv');
Unexpected Exception:
Line 1 position 1: Column lists differ, 4 column(s) vs 3 column(s).

Import file, with 4 fields:

[rapids@db1 text]$ cat lead_trail_blanks.csv
1, 4 leading blanks,3 trailing blanks ,1
2,A2345678901234567890,A1234567890123456789,2
3," 4 leading blanks","3 trailing blanks ",3

11.13.5 Wildcard import to multiple connectors
This error occurs when an attempt is made to do a bulk import operation where the target tables are
managed by different Connectors, which is not allowed:

Example:
Below are the current tables that are managed by the “MOXE” and “MOXE2” Connectors:

rapids > show tables;
CATALOG_NAME SCHEMA_NAME TABLE_NAME
------------ ----------- ----------
MOXE MOXE CUSTOMER
MOXE MOXE LINEITEM
MOXE MOXE NATION
MOXE MOXE ORDERS
MOXE MOXE REGION
MOXE MOXE SUPPLIER
MOXE2 MOXE2 PART
MOXE2 MOXE2 PARTSUPP
…
29 row(s) returned (0.23 sec)

Below is the bulk import command that will attempt to do imports against all of the tables shown above,
which is not allowed because the tables are managed by two different Connectors. The error message

RapidsDB Release 4.3.3 User Guide Page 190 © Borrui Data Technology Co. Ltd 2022

shows one table from each Connector which would have been imported into, which in this example are
the “PART” table managed by the “MOXE2” Connector and “NATION” table managed by the “MOXE”
Connector.

rapids > IMPORT * FROM FOLDERS 'node://db1/tpch_small';
Unexpected Exception:
Wildcard import to multiple Connectors: PART, NATION

12 REFRESH Command
The REFRESH command must be used when the underlying table metadata in a Data Store has been
changed, where the change was not the result of a CREATE or DROP table request that was sent from
RapidsDB (see section 10) and the user wishes to access the metadata information from RapidsDB. An
example would be when a new table is created in Postgres using the native Postgres psql command
interface.

The syntax for the refresh command is:

 refresh [<Connector>];

If the Connector name is specified then the refresh command will only be applied to that Connector, if
the Connector name is omitted then the refresh command will be applied to all enabled Connectors.

13 SYSTEM METADATA TABLES

13.1 OVERVIEW
RapidsDB provides a set of system metadata tables which provide metadata information about the
RapidsDB system which is similar to the information provided by the ANSI Information Schema. The
system metadata tables reside in the RAPIDS.SYSTEM catalog and schema. Each Federation has a
METADATA Connector that maintains the system metadata tables for that Federation. The table below
lists the system metadata tables:

Table Name Description

NODES A list of all of the nodes in the RapidsDB Cluster

FEDERATIONS A list of all the Federations

CONNECTORS A list of all of the Connectors in the current Federation

CATALOGS A list of the catalogs that can be accessed from the current Federation

SCHEMAS A list of the schemas that can be accessed from the current Federation

RapidsDB Release 4.3.3 User Guide Page 191 © Borrui Data Technology Co. Ltd 2022

TABLES Metadata for the tables and views that can be accessed from the current
Federation.

INDEXES Metadata for any indexes defined on tables that can be accessed from
the current Federation.

COLUMNS A list of all the columns that can be accessed from the current Federation

TABLE_PROVIDERS A list of all of the tables from each Connector, including any duplicates.

AUTHENTICATORS A list of all authenticator instances that have been created in the system.

AUTHENTICATOR_CONFIG Lists any additional custom properties about the authenticator instances
that have been created in the system.

USERS A list of all users that exist in the system.

USER_CONFIG Any additional custom properties about users that exist in the system.

SESSIONS A list of all active sessions across the cluster.

USERNAME_MAPS A list of defined mappings from an external identifier to RapidsDB
usernames.

PATTERN_MAPS A list of defined patterns for transforming an external identifier to a
RapidsDB username.

QUERIES A list of all the active queries

QUERY_STATS Query statistics for all the active queries. This table is not fully
operational as of this release and should be ignored

The system metadata tables are treated the same as any other tables by RapidsDB, and as for any user
tables, it is only necessary to include the catalog and/or schema name when there are multiple tables in
the current Federation that use the same name. Assuming that system metadata table names are all
unique within the current Federation, then the following queries will all be successful:

i) select * from rapids.system.tables;
ii) select * from system.tables;
iii) select * from tables;

13.2 NODES Table
The NODES table contains a list of the nodes in the RapidsDB Cluster. The table below shows the
columns in the NODES table:

RapidsDB Release 4.3.3 User Guide Page 192 © Borrui Data Technology Co. Ltd 2022

Column Name Description

NODE_NAME The name assigned by the user to this node

IS_DQC Set to ‘true’ if this node is the DQC node, otherwise set to false

HOSTNAME The host name or ip address for this node

CLIENT_PORT The port number that the wireline protocol is listening on, which will be
used by the RapidsDB Unified JDBC Driver for connecting to the RapidsDB
cluster

CLUSTER_PORT The port number that this node will be listening on

INSTALLATION_DIR The installation directory for the RapidsDB Cluster software

WORKING_DIR The working directory used for the RapidsDB Cluster software

Example:

This example shows a 4 node RapidsDB Cluster with the node having ip address 192.168.1.98 being
assigned the node name “DB1” and acting as the DQC node. The other node is a DQE node.

13.3 FEDERATIONS Table
The FEDERATIONS table contains a list of the Federations in the RapidsDB Cluster. The table below
shows the columns in the FEDERATIONS table:

Column Name Description

FEDERATION_NAME The name of the Federation. By default there will always be one Federation
named DEFAULTFED.

IS_DEFAULT Set to ‘true’ if this is the default Federation, otherwise set to false

Example:

RapidsDB Release 4.3.3 User Guide Page 193 © Borrui Data Technology Co. Ltd 2022

13.4 CONNECTORS Table
The CONNECTORS table contains a list of the Connectors in the RapidsDB Cluster. The table below shows
the columns in the CONNECTORS table:

Column Name Description

FEDERATION_NAME The name that of the Federation that this Connector belongs to

CONNECTOR_NAME The name of the Connector

CONNECTOR_TYPE The type of Connector, such as IMPEX, METADATA, MOXE or MYSQL

CONNECTOR_DDL The CREATE CONNECTOR command that was used to create this Connector

IS_ENABLED Set to ‘true’ if the Connector is enabled, otherwise it is set to false

The query below shows the sample output for querying this table:

In this example there are 3 Connectors in the DEFAULTFED Federation:

1. METADATA – manages the metadata for the DEFAULTFED Federation.
2. PARQSF10 – a Hadoop Connector
3. MOXE1 – a MOXE Connector

13.5 CATALOGS Table
The CATALOGS table contains a list of the catalogs in the current Federation. The table below shows the
columns in the CATALOGS table:

RapidsDB Release 4.3.3 User Guide Page 194 © Borrui Data Technology Co. Ltd 2022

Column Name Description

CATALOG_NAME The name of the catalog

The query below shows the sample output for querying this table:

In this example there are 3 catalogs:

1. MOXE_1 – this is the catalog for MOXE Connector named “MOXE_1”
2. MYSQL_A – this is the catalog for the MemSQL Connector named “MEM1”
3. RAPIDS – this is the catalog for the METADATA Connector

13.6 SCHEMAS Table
The SCHEMAS table contains a list of the schemas in the current Federation. The table below shows the
columns in the SCHEMAS table:

Column Name Description

CATALOG_NAME The name of the catalog

SCHEMA_NAME The name of the schema

The query below shows the sample output for querying this table:

In this example there are 3 schemas:

1. MOXE_1 – this is the schema for the MOXE Connector, “MOXE_1”
2. CUSTOMER – this is the schema for the MySQL Connector, “MYSQL_A”
3. SYSTEM – this is the schema for the Metadata Connector

RapidsDB Release 4.3.3 User Guide Page 195 © Borrui Data Technology Co. Ltd 2022

13.7 TABLES Table
The TABLES table contains a list of the tables that can be accessed from the current Federation. The
table below shows the columns in the TABLES table:

Column Name Description

CATALOG_NAME The name of the catalog for this table

SCHEMA_NAME The name of the schema for this table

TABLE_NAME The name of the table

IS_PARTITIONED Set to ‘true’ if this table is partitioned, otherwise it is set to false

COMMENT Comment for the table, if any

PROPERTIES Indicates any properties associated with the table, such as the HDFS path
name for tables managed by a Hadoop Connector

Example:
The following example shows tables from a MySQL database where there are comments on the columns
and tables:

rapids > select * from tables where schema_name='test';
CATALOG_NAME SCHEMA_NAME TABLE_NAME IS_PARTITIONED COMMENT
PROPERTIES
------------ ----------- ---------- -------------- -------

test test COMMENTS false Test table for
comments NULL
test test TESTING01 false NULL
NULL
test test dctest false This is a test
table for comments NULL

3 row(s) returned (0.05 sec)

13.8 INDEXES Table
The INDEXES table contains a list of the tables that can be accessed from the current Federation. The
table below shows the columns in the INDEXES table:

Column Name Description

CATALOG_NAME The name of the catalog for this table

RapidsDB Release 4.3.3 User Guide Page 196 © Borrui Data Technology Co. Ltd 2022

SCHEMA_NAME The name of the schema for this table

TABLE_NAME The name of the table

INDEX_NAME The name of the index

IS_UNIQUE true if the index is unique

IS_PRIMARY true if the index is the primary key

INDEX_TYPE The type of index

ORDINAL The position of the column in the index

COLUMN_NAME The column name

The example output below shows the index metadata for indexes defined on tables in MemSQL:

rapids > select * from indexes;
CATALOG_NAME SCHEMA_NAME TABLE_NAME INDEX_NAME IS_UNIQUE IS_PRIMARY INDEX_TYPE ORDINAL COLUMN_NAME
------------ ----------- ---------- ---------- --------- ---------- ---------- ------- -----------
MEMSQL TPCH LINEITEM PRIMARY true true TREE 1 L_ORDERKEY
MEMSQL TPCH LINEITEM PRIMARY true true TREE 2 L_LINENUMBER
MEMSQL TPCH LINEITEM li_com_dt_idx false false TREE 1 L_COMMITDATE
MEMSQL TPCH LINEITEM li_rcpt_dt_idx false false TREE 1 L_RECEIPTDATE
MEMSQL TPCH LINEITEM li_shp_dt_idx false false TREE 1 L_SHIPDATE
MEMSQL TPCH LINEITEM lineitem_fk1 false false TREE 1 L_ORDERKEY
MEMSQL TPCH LINEITEM lineitem_fk2 false false TREE 1 L_SUPPKEY
MEMSQL TPCH LINEITEM lineitem_fk3 false false TREE 1 L_PARTKEY
MEMSQL TPCH LINEITEM lineitem_fk3 false false TREE 2 L_SUPPKEY
MEMSQL TPCH LINEITEM lineitem_fk4 false false TREE 1 L_PARTKEY

13.9 COLUMNS Table
The COLUMNS table contains a list of the columns for all of the tables that can be accessed in the
current Federation. The table below shows the columns in the COLUMNS table:

Column Name Description

CATALOG_NAME The name of the catalog for this table

SCHEMA_NAME The name of the schema for this table

TABLE_NAME The name of the table

COLUMN_NAME The name of the column

DATA_TYPE The data type for the column

ORDINAL The column number (one-based)

RapidsDB Release 4.3.3 User Guide Page 197 © Borrui Data Technology Co. Ltd 2022

IS_PARTITION_KEY Set to ‘true’ if this column part of the partition (shard) key

IS_NULLABLE True if the column is nullable

PRECISION Precision for numerical columns

PRECISION_RADIX If data_type identifies a numeric type, this column indicates in which base
the values in the columns numeric_precision and numeric_scale are
expressed. The value is either 2 or 10 as follows:
INTEGER, FLOAT: 2
DECIMAL: 10

PRECISION_SCALE Scale for decimal and float columns

CHARACTER_SET Character set for column

COLLATION Not used

COMMENT Column comment

PROPERTIES Properties associated with column

Example 1:

This example shows the column definition for the TPC-H “ORDERS” table:

rapids > select * from columns where table_name='ORDERS';

CATALOG_NAME SCHEMA_NAME TABLE_NAME COLUMN_NAME DATA_TYPE
ORDINAL IS_PARTITION_KEY IS_NULLABLE PRECISION PRECISION_RADIX
SCALE CHARACTER_SET COLLATION COMMENT PROPERTIES
------------ ----------- ---------- ----------- --------- ---
---- ---------------- ----------- --------- --------------- ----- -
------------ --------- ------- ----------
MOXE MOXE ORDERS O_ORDERKEY INTEGER
0 true false 64 2 NULL NULL
NULL NULL serial:Kind=integer64
MOXE MOXE ORDERS O_CUSTKEY INTEGER
1 false false 64 2 NULL NULL
NULL NULL serial:Kind=integer64
MOXE MOXE ORDERS O_ORDERSTATUS VARCHAR
2 false true NULL NULL NULL
UTF16 BINARY NULL serial:Kind=stringRA2
MOXE MOXE ORDERS O_TOTALPRICE DECIMAL
3 false true 17 10 2 NULL
NULL NULL serial:Kind=decimal64

RapidsDB Release 4.3.3 User Guide Page 198 © Borrui Data Technology Co. Ltd 2022

MOXE MOXE ORDERS O_ORDERDATE DATE
4 false true NULL NULL NULL NULL
NULL NULL serial:Kind=timestamp
MOXE MOXE ORDERS O_ORDERPRIORITY VARCHAR
5 false true NULL NULL NULL
UTF16 BINARY NULL serial:Kind=stringRA2
MOXE MOXE ORDERS O_CLERK VARCHAR
6 false true NULL NULL NULL
UTF16 BINARY NULL serial:Kind=stringRA2
MOXE MOXE ORDERS O_SHIPPRIORITY INTEGER
7 false true 64 2 NULL NULL
NULL NULL serial:Kind=integer64
MOXE MOXE ORDERS O_COMMENT VARCHAR
8 false true NULL NULL NULL
UTF16 BINARY NULL serial:Kind=stringRA2

9 row(s) returned (0.05 sec)

Example 2

This example shows a table with column comments:

rapids > select * from columns where table_name='COMMENTS';
CATALOG_NAME SCHEMA_NAME TABLE_NAME COLUMN_NAME DATA_TYPE
ORDINAL IS_PARTITION_KEY IS_NULLABLE PRECISION PRECISION_RADIX
SCALE CHARACTER_SET COLLATION COMMENT PROPERTIES
------------ ----------- ---------- ----------- ---------
------- ---------------- ----------- --------- ---------------
----- ------------- --------- ------- ----------
test test COMMENTS C1 INTEGER
0 false true 64 2
NULL NULL NULL Integer column NULL
test test COMMENTS C2 DECIMAL
1 false true 15 10
2 NULL NULL decimal column NULL
test test COMMENTS C3 FLOAT
2 false true 53 2
NULL NULL NULL float column NULL

3 row(s) returned (0.05 sec)

13.10 TABLE_PROVIDERS Table
The table below shows the columns in the TABLE_PROVIDERS table:

Column Name Description

RapidsDB Release 4.3.3 User Guide Page 199 © Borrui Data Technology Co. Ltd 2022

CATALOG_NAME The name of the catalog for this table

SCHEMA_NAME The name of the schema for this table

TABLE_NAME The name of the table

CONNECTOR_NAME The name of the Connector that is managing access to this table

13.11 AUTHENTICATORS Table
The table below shows the columns in the AUTHENTICATORS table:

Column Name Description

AUTHNAME The name of the authenticator instance.

TYPE The name of the type of authenticator.

ENABLED Whether the authenticator is enabled or disabled.

DDL The DDL string to recreate this authenticator.

rapids > select * from authenticators;
AUTHNAME TYPE ENABLED DDL
-------- ---- ------- ---
RDPAUTH RDP true CREATE AUTHENTICATOR RDPAUTH TYPE RDP ;

RapidsDB Release 4.3.3 User Guide Page 200 © Borrui Data Technology Co. Ltd 2022

KRB KERBEROS true CREATE AUTHENTICATOR KRB TYPE KERBEROS WITH REALM = 'HOME';

13.12 AUTHENTICATOR_CONFIG Table
The table below shows the columns in the AUTHENTICATOR_CONFIG table:

Column Name Description

AUTHNAME The name of the authenticator instance.

KEY The name of the custom property for this authenticator instance.

VALUE The value of the custom property for this authenticator instance.

rapids > select * from authenticator_config;
AUTHNAME KEY VALUE
-------- --- -----
RDPAUTH rdp.authenticator.name RDPAUTH
RDPAUTH rdp.authenticator.type RDP
KRB REALM HOME
KRB rdp.authenticator.name KRB
KRB rdp.authenticator.type KERBEROS

13.13 USERS Table
The table below shows the columns in the USERS table:

Column Name Description

USERNAME The unique name of the user.

ENABLED Whether the user is enabled or disabled.

AUTHNAME The name of the authenticator instance this user is associated with.

rapids > select * from users;
USERNAME ENABLED AUTHNAME
-------- ------- --------
CRAIG true KRB
RAPIDS true RDPAUTH
john true RDPAUTH

13.14 USER_CONFIG Table
The table below shows the columns in the USER_CONFIG table:

Column Name Description

RapidsDB Release 4.3.3 User Guide Page 201 © Borrui Data Technology Co. Ltd 2022

USERNAME The username.

KEY The name of the custom property for this authenticator instance.

VALUE The value of the custom property for this authenticator instance.

rapids > select * from user_config;
USERNAME KEY VALUE
-------- --- -----
CRAIG PRINCIPAL craig@HOME

13.15 SESSIONS Table
The table below shows the columns in the SESSIONS table:

Column Name Description

SESSION_ID The unique name of the session across the cluster.

USERNAME The username that the client has authenticated as, or null.

NODE The node that the client connected to.

CLIENT_IP The IP address of the client.

CLIENT_PORT The port address that the client is connecting from.

SERVER_PORT The port address that the client is connected to.

ESTABLISHED The timestamp when the client first connected.

rapids > select * from sessions;
SESSION_ID USERNAME NODE CLIENT_IP CLIENT_PORT SERVER_PORT ESTABLISHED
---------- -------- ---- --------- ----------- ----------- -----------
S1@NODE1 RAPIDS NODE1 127.0.0.1 50547 4333 2019-04-18 07:00:22.376

13.16 USERNAME_MAPS Table
The table below shows the columns in the USERNAME_MAPS table:

Column Name Description

ID The external identifier to map from.

USERNAME The RapidsDB username to map this external identifier to.

rapids > select * from username_maps;

RapidsDB Release 4.3.3 User Guide Page 202 © Borrui Data Technology Co. Ltd 2022

ID USERNAME
-- --------
craig@HOME CRAIG

13.17 PATTERN_MAPS Table
The table below shows the columns in the PATTERN_MAPS table:

Column Name Description

PRIORITY The order in which the pattern mapping is tried (highest first).

SEARCH The pattern to test against the external user ID.

REPLACE The replacement pattern to be applied against the external user ID in
conjunction with the search pattern.

rapids > select * from pattern_maps;
 PRIORITY SEARCH REPLACE
 -------- ------ -------
 100 ^(.+)/admin@COMPANY.COM$ ADMIN
 90 ^(.+?)(/[^@]*)?@COMPANY.COM$ $1
 80 ^(.+?)(/[^@]*)?@EXAMPLE.COM$ $1_EXAMPLE

13.18 QUERIES Table
The table below shows the columns in the QUERIES table:

Column Name Description

QUERY_ID The query id

SESSION_ID The session id where this query is running

NODE The RapidsDB node where the query was started

USERNAME The name of the user running this query

START_TIME The timestamp when the query was started

QUERY_TEXT The SQL query

When querying the QUERIES table, only the queries submitted by the current user will be displayed
unless the userid is “RAPIDS” in which case the queries for all users will be displayed.

Example:

RapidsDB Release 4.3.3 User Guide Page 203 © Borrui Data Technology Co. Ltd 2022

Below is a query submitted from the rapids-shell:

Below is the content of the QUERIES table while this query is running:

14 Cancelling a Query
There are three ways that an active query can be cancelled as explained in the following sections.

14.1 rapids-shell
If the query was started from the rapids-shell then the user can enter Ctrl-k from the rapids-shell
window where the query is running. This will result in a message being sent to RapidsDB to cancel the
query currently running on that connection. This requires rapids-shell version 4 and the RapidsDB JDBC
Driver version 4, both of which are included with this release.

Example:

Checking the QUERIES table from another window shows this query running:

RapidsDB Release 4.3.3 User Guide Page 204 © Borrui Data Technology Co. Ltd 2022

Press Ctrl-K:

Checking the QUERIES table shows this query no longer running:

14.2 JDBC
Programmatically via the RapidsDB JDBC Driver using the Statement.cancel() interface:

• When a Statement instance is being executed, a second thread can call the cancel() method on it.
This will cause the JDBC driver to create a temporary connection to the server, authenticate and
issue a query cancellation. When the query is cancelled, the execution of the Statement object will
return with a JDBC SqlException indicating that the query was cancelled.

• The call to Statement.cancel() will return once the cancellation request has been submitted to
RapidsDB. This is not necessarily the same time that the cancelled query actually exits early.

• If Statement.cancel() is called on a statement that has already completed or hasn’t been executed in
RapidsDB yet then an error is returned to the caller.

• Requires RapidsDB JDBC driver version 4.

14.3 CANCEL QUERY command
Using the SQL command CANCEL QUERY.

The syntax for the CANCEL QUERY command is:

CANCEL QUERY [IF EXISTS] <queryId>;

• The <queryId> can be found from the QUERIES metadata table (see 13.18).

RapidsDB Release 4.3.3 User Guide Page 205 © Borrui Data Technology Co. Ltd 2022

• Queries can be cancelled on remote nodes as well as the local node.
• Only the user that initiated the query can cancel the query, unless the user is the RAPIDS user in

which case that user can cancel any query

Example:

Example: In the example below the query is initiated on Session 1, and then cancelled from a
different session, Session 2.

Session 1:

Session 2 – from another session, list the currently active queries and then cancel the query
started from session 1:

Session 1 – this is the exception returned on session 1 after the query is cancelled:

RapidsDB Release 4.3.3 User Guide Page 206 © Borrui Data Technology Co. Ltd 2022

15 Performance Tuning

15.1 EXPLAIN
EXPLAIN instructs the rapids-shell to output a schematic representation of the query plan for the
associated statement, including the SQL queries that will be sent to the underlying Data Store and the
internal operators and routing for operations that will be performed by the RapidsDB Execution Engine.

Syntax:
EXPLAIN <SQL statement>

Example 1 – simple select

Example 2 – 1-way join

15.2 JOIN Order
For SELECT statements with JOINs the user should order the tables in the query from left to right so that
the table with the smallest number of rows, given the supplied WHERE clause predicates, is to the left
and the table with the largest number of rows is the last table. For example, with the following query:

RapidsDB Release 4.3.3 User Guide Page 207 © Borrui Data Technology Co. Ltd 2022

SELECT l_orderkey,
 SUM(l_extendedprice) AS revenue,
 o_orderdate,
 o_shippriority
FROM lineitem
 join orders

ON l_orderkey = o_orderkey
 join customer
 ON c_custkey = o_custkey
WHERE c_mktsegment = 'FURNITURE'
 AND o_orderdate < '2014-05-01 12:00:00'
 AND l_shipdate > '2014-04-01 12:00:00'
GROUP BY l_orderkey,
 o_orderdate,
 o_shippriority;

If the rows returned from the customer table are the smallest and the rows returned from the lineitem
table are the largest, then the query should be changed to the following in order to achieve the best
query performance:

SELECT l_orderkey,
 SUM(l_extendedprice) AS revenue,
 o_orderdate,
 o_shippriority
FROM customer
 join orders
 ON c_custkey = o_custkey
 join lineitem
 ON l_orderkey = o_orderkey
WHERE c_mktsegment = 'FURNITURE'
 AND o_orderdate < '2014-05-01 12:00:00'
 AND l_shipdate > '2014-04-01 12:00:00'
GROUP BY l_orderkey,
 o_orderdate,
 o_shippriority;

15.3 Restrict Amount of Data
Care should be taken to restrict the amount of data in JOINs by using the appropriate predicates in the
WHERE clause. Failure to do this could result in too much data being requested from the Data Store

RapidsDB Release 4.3.3 User Guide Page 208 © Borrui Data Technology Co. Ltd 2022

which could cause one or more of the DQE nodes to fail due to exhausting their heaps. In the previous
example, the timestamps in the WHERE clause should be further restricted, for example:

WHERE c_mktsegment = 'FURNITURE'
 AND o_orderdate < '2014-05-01 12:00:00'
 AND o_orderdate > '2014-04-01 12:00:00'
 AND l_shipdate < '2014-05-01 12:00:00'
 AND l_shipdate > '2014-04-01 12:00:00'

16 Error Messages

16.1 RapidsDB shell Messages
• Failed to submit statement
The RapidsDB shell program was unable to send the statement to the DQC. The likely cause is a failed node or a
network problem. The bootstrapper (refer to the RapidsDB Installation Manual) HEALTHCHECK option can be used
to verify that the cluster is operating normally.

• System exception on node <hostname:port>: <exception>: <message>
A system exception occurred. This most likely indicates a software issue but may occur because of a network
problem. Before resubmitting the query, the bootstrapper HEALTHCHECK option should be used to verify that the
cluster is operating normally. (Note: system exceptions are normally followed by "traceback" information. If
possible, this information should be preserved and included with any bug report.)

• DQS exception on node <hostname:port>: <exception>: <message>
An exception occurred while processing the query. The query can be retried.

• Subsystem exception on node <hostname:port>: <exception>: <message>
An exception occurred while processing the query. The query can be retried. The most common source of
subsystem errors is exceptions from the underlying Data Store(see Data Store messages below).

16.2 Query Rejection Messages
In addition to the above, statements submitted to the RapidsDB shell may be rejected with any of the messages
below.

• Unrecognized token
A token (i.e. keyword or term) in the query was misplaced, misspelled or contained illegal characters.

• Syntax error near <token>
The parser could not recognize the syntax of the statement. The last token (i.e. keyword or term) recognized is
shown.
Check that the structure of the statement is correct, keywords and table names are correctly spelled and no table
or columns have the same name as a SQL keyword.

• Syntax error at <token> expected <tokens>
The parser could not recognize the syntax of the statement. A recognizable token (i.e. keyword or term) was
encountered, but it was not one of the tokens expected. Check that the structure of the statement is

RapidsDB Release 4.3.3 User Guide Page 209 © Borrui Data Technology Co. Ltd 2022

correct, keywords and table names are correctly spelled and no table or columns have the same name as a SQL
keyword.

• Reference to undefined table or stream: <name>
The statement refers to a table name that is neither a table in the database nor a properly defined table or
subquery alias within the query. Check that all table names or aliases are correctly spelled.

• Reference to undefined column: <name>
The statement refers to a variable or column name that is not defined in any of the tables or subqueries in the
statement.
Check that column names are correctly spelled.

• Ambiguous reference to table or stream: <name>
The statement refers to table name that is defined in more than catalog and schema. The table name must be
qualified with either the schema name or the catalog and schema name to disambiguate the table name.

• Ambiguous reference to column: <name>
The statement refers to a variable or column name that is defined in more than one table or subquery. Qualify the
column name with a table name or a table or subquery alias.

• Type mismatch in <name>
The arguments to the named operator or function were of the wrong type. For details on the number and type of
function arguments (see 3.2 for more information on operators and functions).

• Wrong number of arguments for function: <name>
The wrong number of arguments were supplied for the named function. For details on the number and type of
function arguments, (see 3.2 for more information on operators and functions).

• Unsupported operator or function: <name>
The named operator or function is valid in SQL but is not supported in RapidsDB.

• JOIN predicate must be boolean expression
The expression in the ON clause of a join must be of boolean type (i.e. must produce a true or false result).

• WHERE predicate must be boolean expression
The expression in the WHERE clause must be of boolean type (i.e. must produce a true or false result).

• FULL OUTER join not supported
RapidsDB does not support full outer joins. Only inner joins and left or right outer joins are supported.

• Invalid GROUP BY expression
The expression specified in the GROUP BY clause contains an aggregate function (COUNT, MIN, MAX, SUM or
AVG). Only scalar operators and functions can be used in GROUP BY.

• Expression not in aggregate of GROUP BY column.
In a query or subquery that specifies aggregation (COUNT, MIN, MAX, SUM or AVG functions) and/or grouping
(GROUP BY clause), each expression in the SELECT list must be either an aggregate or a duplicate of one of
the GROUP BY expressions. In other words, each SELECT expression must produce only a single value per group
(or, if there is no grouping, a single value for the entire query).

RapidsDB Release 4.3.3 User Guide Page 210 © Borrui Data Technology Co. Ltd 2022

• Invalid column index in ORDER BY
The ORDER BY <column number> clause was used but the specified column number is greater than the number of
columns produced by the query or subquery.

• LIMIT value must not be negative
The LIMIT clause specified a negative limit. The value in the LIMIT clause must be zero or positive.

• OFFSET value must not be negative
The OFFSET clause specified a negative offset. The value in the OFFSET clause must be zero or positive.

• Select list count mismatch
The statement contains a UNION clause in which the query on the left side produces a different number of
columns than the query on the right side. The queries on either side of a UNION must produce a matching number
of columns.

• Select list type mismatch
The statement contains a UNION clause in which the query on the left side produces columns whose types
are incompatible with the columns produced by the query on the right side. The queries on either side of a UNION
must produce columns with matching types. Any numeric type is considered a match for any other numeric
type. All other types must match exactly.

16.3 Data Store-Related Messages
Note: messages related to the underlying Data Store may occur as either RapidsDB Exceptions or Subsystem
Exceptions (see above).

• Timed out waiting for queries sent to VoltDB to complete
A query that was sent to the Data Store took an excessive amount of time to produce a result. The query can be
retried. This may indicate that Data Store is too heavily loaded on one or more hosts. If the error recurs, consider
reducing the number of concurrent queries (to reduce the number of queries that are concurrently executed by
RapidsDB, change -q option passed to the boostrapper – see RapidsDB Installation and Management Manual).

• No connections.
The Data Store has disconnected from one or more RapidsDB nodes due to inactivity. The query can be retried.

• SQL ERROR More than nnn MB of temp table memory used while executing SQL.
The intermediate results of the query are too large for the internal tables in the Data Store. You can adjust the
maximum size of the internal tables in the Data Store to accomodate the query in the Data Store deployment
file. (For more information, see RapidsDB Installation and Management Manual)

• SQL ERROR Output from SQL stmt overflowed output/network buffer of 50mb
The final result of the query is too large for the Data Store output buffers. You may be able to limit the size of the
result using the LIMIT clause or break the query into sections using the LIMIT, OFFSET and UNION clauses.

Appendix A SQL Grammar

RapidsDB Installation and Management Guide
Release 4.2 Draft Page 1 © Borrui Data Technology Co. Ltd 2020

RapidsDB Installation and Management Guide
Release 4.2 Draft Page 2 © Borrui Data Technology Co. Ltd 2020

RapidsDB Installation and Management Guide
Release 4.2 Draft Page 3 © Borrui Data Technology Co. Ltd 2020

RapidsDB Installation and Management Guide
Release 4.2 Draft Page 4 © Borrui Data Technology Co. Ltd 2020

RapidsDB Installation and Management Guide
Release 4.2 Draft Page 5 © Borrui Data Technology Co. Ltd 2020

RapidsDB Installation and Management Guide
Release 4.2 Draft Page 6 © Borrui Data Technology Co. Ltd 2020

RapidsDB Installation and Management Guide
Release 4.2 Draft Page 7 © Borrui Data Technology Co. Ltd 2020

RapidsDB Installation and Management Guide
Release 4.2 Draft Page 8 © Borrui Data Technology Co. Ltd 2020

RapidsDB Installation and Management Guide
Release 4.2 Draft Page 9 © Borrui Data Technology Co. Ltd 2020

RapidsDB Installation and Management Guide
Release 4.2 Draft Page 10 © Borrui Data Technology Co. Ltd 2020

RapidsDB Installation and Management Guide
Release 4.2 Draft Page 11 © Borrui Data Technology Co. Ltd 2020

RapidsDB Installation and Management Guide
Release 4.2 Draft Page 12 © Borrui Data Technology Co. Ltd 2020

RapidsDB Installation and Management Guide
Release 4.2 Draft Page 13 © Borrui Data Technology Co. Ltd 2020

RapidsDB Installation and Management Guide
Release 4.2 Draft Page 14 © Borrui Data Technology Co. Ltd 2020

RapidsDB Installation and Management Guide
Release 4.2 Draft Page 15 © Borrui Data Technology Co. Ltd 2020

RapidsDB Installation and Management Guide
Release 4.2 Draft Page 16 © Borrui Data Technology Co. Ltd 2020

RapidsDB Installation and Management Guide
Release 4.2 Draft Page 17 © Borrui Data Technology Co. Ltd 2020

RapidsDB Installation and Management Guide
Release 4.2 Draft Page 18 © Borrui Data Technology Co. Ltd 2020

RapidsDB Installation and Management Guide
Release 4.2 Draft Page 19 © Borrui Data Technology Co. Ltd 2020

RapidsDB Installation and Management Guide
Release 4.2 Draft Page 20 © Borrui Data Technology Co. Ltd 2020

RapidsDB Installation and Management Guide
Release 4.2 Draft Page 21 © Borrui Data Technology Co. Ltd 2020

	1 Overview
	1.1 Changes
	1.1.1 Changes from 4.3
	1.1.2 Changes from 4.2.3.2
	1.1.3 Changes from 4.2.3.1
	1.1.4 Changes from 4.2.3
	1.1.5 Changes from 4.2.2
	1.1.6 Changes from 4.2.1
	1.1.7 Changes from 4.2
	1.1.8 Changes from 4.1
	1.1.9 Changes from 4.03
	1.1.10 Changes from R3.6
	1.1.11 Changes from 3.4.2
	1.1.12 Changes from Release 3.4.1
	1.1.13 Changes from Release 3.4
	1.1.14 Changes from Release 3.3.2
	1.1.15 Changes from Release 3.3
	1.1.16 Changes from Release 3.1

	1.2 What is RapidsDB?
	1.3 RapidsDB Components
	1.3.1 RapidsDB Plex
	1.3.2 SQL Compiler and Optimizer
	1.3.3 Massively Parallel Processing (MPP) Execution Engine
	1.3.4 Federated Connectors
	1.3.5 MOXE
	1.3.6 Client API
	1.3.6.1 RapidsDB Manager
	1.3.6.2 rapids-shell
	1.3.6.3 JBDC
	1.3.6.4 Wireline Protocol

	1.3.7 Zookeeper

	1.4 RapidsDB Cluster Topology

	2 Federations, Connectors and Naming
	2.1 Overview
	2.2 Connectors
	2.3 Table Naming
	2.4 Retrieval and Storage of Schema Metadata
	2.5 Object Name Resolution and Case Sensitivity
	2.6 Connector Lookup of Object Names (Default)
	2.7 Case-sensitive Lookups
	2.8 Handling Table Metadata
	2.9 Mapping Catalog, Schema and Table Names

	3 Operational Considerations for Connectors
	3.1 MOXE Connector
	3.2 RDBMS Connectors
	3.3 Generic JDBC Connector
	3.4 Hadoop Connector
	3.4.1 Partitioning
	3.4.1.1 Delimited Files
	3.4.1.2 ORC and Parquet Files

	3.4.2 Hive-style Partitioning
	3.4.3 Writing Data to HDFS

	3.5 IMPEX Connector

	4 Query Interfaces
	4.1 RapidsDB Command Line Interface (rapids-shell)
	4.1.1 Running the rapids-shell Locally
	4.1.2 Running the rapids-shell Remotely
	4.1.3 Authentication of the rapids-shell

	4.2 Programmatic Interfaces
	4.2.1 JDBC
	4.2.2 Invoking the rapids-shell Programmatically

	5 SQL Syntax
	5.1 Lexical Structure
	5.1.1 Identifiers and Keywords
	5.1.2 Constants
	5.1.2.1 String Constants
	5.1.2.2 Boolean Constants
	5.1.2.3 Numeric Constants

	5.1.3 Operators
	5.1.4 Special Characters
	5.1.5 Comments
	5.1.6 Operator Precedence

	5.2 Data Types and Type Specifiers
	5.2.1 Data Types
	5.2.2 Type Specifiers
	5.2.3 Use in CAST
	5.2.4 Use in Column Definitions
	5.2.5 System Metadata
	5.2.6 Internal Precision

	5.3 Value Expressions
	5.3.1 Column References
	5.3.2 Operator Invocation
	5.3.3 Function Call
	5.3.4 Aggregate Expression
	5.3.5 Type Cast
	5.3.6 Decimal Expressions and Precision
	5.3.7 Scalar Subquery
	5.3.8 Expression Evaluation Rules

	6 Queries
	6.1 Overview
	6.2 Table Expressions
	6.2.1 The FROM Clause
	6.2.1.1 Joined Tables
	6.2.1.1.1 CROSS JOIN
	6.2.1.1.2 INNER JOIN
	6.2.1.1.3 LEFT OUTER JOIN
	6.2.1.1.4 RIGHT OUTER JOIN
	6.2.1.1.5 ON Clause
	6.2.1.1.6 USING Clause

	6.2.1.2 Table and Column Aliases
	6.2.1.3 Subqueries

	6.2.2 WHERE Clause
	6.2.3 GROUP BY and HAVING Clause

	6.3 SELECT Lists
	6.3.1 SELECT List Items
	6.3.2 Column Labels
	6.3.3 DISTINCT

	6.4 Combining Queries (UNION, INTERSECT, EXCEPT)
	6.4.1 UNION
	6.4.2 INTERSECT
	6.4.3 EXCEPT

	6.5 ORDER BY
	6.6 LIMIT and OFFSET
	6.7 WITH (Common Table Expressions)

	7 Functions and Operators
	7.1 Logical Operators
	7.2 Comparison Operators and BETWEEN
	7.3 Mathematical Operators and Functions
	7.4 String Functions and Operators
	7.5 Pattern Matching – LIKE
	7.6 Date/Time Functions
	7.6.1 EXTRACT(from timestamp)
	7.6.2 CURRENT_TIMESTAMP
	7.6.3 NOW()
	7.6.4 Interval Arithmetic
	7.6.4.1 Interval Types
	7.6.4.2 YEAR-MONTH interval:
	7.6.4.3 DAY-TIME interval:
	7.6.4.4 Support for Interval Arithmetic:
	7.6.4.5 EXTRACT(from interval)
	7.6.4.6 BETWEEN Operator:

	7.7 CONDITIONAL EXPRESSIONS
	7.7.1 CASE
	7.7.2 COALESCE
	7.7.3 IF
	7.7.4 IFNULL
	7.7.5 NULLIF

	7.8 AGGREGATE FUNCTIONS
	7.9 SUB-QUERY EXPRESSIONS
	7.9.1 IN
	7.9.2 NOT IN
	7.9.3 EXISTS

	7.10 Session Functions
	7.10.1 CURRENT_USER
	7.10.2 CURRENT_CATALOG
	7.10.3 CURRENT_SCHEMA

	7.11 VERSION()

	8 QUERY EXECUTION
	8.1 RapidsDB SQL Statement Execution
	8.2 Partitioned Query Plans
	8.3 Non-Partitioned Query Plans
	8.4 Combination of Partitioned and Non-Partitioned Plans
	8.5 RapidsDB Join Algorithms

	9 INSERT
	10 DDL
	10.1 CREATE TABLE
	10.2 Creating MOXE Tables
	10.2.1 Partitioned Tables
	10.2.2 Reference Tables

	10.3 CREATE TABLE [AS] SELECT
	10.3.1 Examples
	10.3.2 Semantics
	10.3.3 Exclusions
	10.3.4 Error Conditions

	10.4 CREATE INDEX
	10.5 DROP TABLE
	10.6 TRUNCATE TABLE

	11 IMPORT/EXPORT Using IMPEX Connector
	11.1 Overview
	11.2 IMPEX Connector Type
	11.3 Creating an IMPEX Connector
	11.4 IMPEX Connector Properties
	11.5 CSV (Delimited) File Formatting
	11.5.1 Text Handling
	11.5.1.1 ESCAPE SEQUENCES
	11.5.1.2 Handling of Leading and Trailing Blanks
	11.5.1.3 Empty Strings

	11.5.2 Dates and Timestamps
	11.5.3 Booleans
	11.5.4 NULL Values
	11.5.5 DELIMITER='<char> | \t'
	11.5.6 ENCLOSED_BY='<char> ' | "'"
	11.5.7 ESCAPE_CHAR='<char>'
	11.5.8 HEADER
	11.5.9 CHARSET
	11.5.10 TRAILING

	11.6 IMPORT References
	11.7 EXPORT References
	11.8 Default IMPORT and EXPORT Connectors
	11.8.1 Usage
	11.8.2 Default Properties
	11.8.3 Changing the IMPEX Properties for the “IMPORT” and “EXPORT” Connectors

	11.9 IMPORT using SELECT and INSERT
	11.9.1 IMPORT Table Expressions
	11.9.2 IMPORT using a SELECT statement
	11.9.2.1 Overview
	11.9.2.2 Column Naming Using Default Column Names
	11.9.2.3 Column Naming Using AS clause
	11.9.2.4 Column Naming Using HEADER option
	11.9.2.5 Column Data Typing Using GUESS Property
	11.9.2.6 Column Data Typing Using AS clause
	11.9.2.7 Column Skipping/Pruning Using AS Clause
	11.9.2.8 Column Naming and Data Typing Using LIKE clause
	11.9.2.9 RAW Data Format
	11.9.2.10 SELECT FROM FILE
	11.9.2.11 SELECT FROM FOLDER
	11.9.2.12 INSERT … SELECT
	11.9.2.13 CREATE AS SELECT

	11.10 Bulk IMPORT
	11.10.1 Bulk IMPORT Using FILES Option
	11.10.2 Bulk IMPORT Using FILES Option With FILTER
	11.10.3 Bulk IMPORT Using FOLDERS Option

	11.11 EXPORT Using SELECT
	11.11.1 EXPORT Using SELECT TO a File
	11.11.2 EXPORT Using SELECT TO a Folder

	11.12 Bulk EXPORT
	11.12.1 Backing Up Files/Sub-Folders When Doing a REPLACE
	11.12.1.1 Backup for FILES option
	11.12.1.2 Backup for FOLDERS option

	11.12.2 Bulk EXPORT Using FILES Option
	11.12.3 Bulk EXPORT Using FOLDERS Option

	11.13 Error Handling
	11.13.1 ERROR_PATH
	11.13.2 ERROR_LIMIT
	11.13.3 Data Conversion Errors
	11.13.4 Mismatched Number of Fields and Columns on INSERT
	11.13.5 Wildcard import to multiple connectors

	12 REFRESH Command
	13 SYSTEM METADATA TABLES
	13.1 OVERVIEW
	13.2 NODES Table
	13.3 FEDERATIONS Table
	13.4 CONNECTORS Table
	13.5 CATALOGS Table
	13.6 SCHEMAS Table
	13.7 TABLES Table
	13.8 INDEXES Table
	13.9 COLUMNS Table
	13.10 TABLE_PROVIDERS Table
	13.11 AUTHENTICATORS Table
	13.12 AUTHENTICATOR_CONFIG Table
	13.13 USERS Table
	13.14 USER_CONFIG Table
	13.15 SESSIONS Table
	13.16 USERNAME_MAPS Table
	13.17 PATTERN_MAPS Table
	13.18 QUERIES Table

	14 Cancelling a Query
	14.1 rapids-shell
	14.2 JDBC
	14.3 CANCEL QUERY command

	15 Performance Tuning
	15.1 EXPLAIN
	15.2 JOIN Order
	15.3 Restrict Amount of Data

	16 Error Messages
	16.1 RapidsDB shell Messages
	16.2 Query Rejection Messages
	16.3 Data Store-Related Messages

	Appendix A SQL Grammar

