
Database Test Guide

数据库测试指南

Database Test Guide

Copyright

Software copyright, copyright and intellectual property right involved
herein have been legally registered according to applicable laws, are
legally possessed by Weixun BorayData Technology (Beijing) Co., Ltd.,
and are protected by Copyright Law of the People’s Republic of China,
Regulations on Computer Software Protection, Regulations on the
Protection of IP Rights and applicable international copyright treaties,
laws, regulations and other intellectual property laws and treaties. It shall
not be used illegally without authorization.

Disclaimer

Copyrights of BorayData involved herein are legally possessed by
BorayData and are protected by laws. BorayData bears no responsibility
for data not belonged to BorayData that are possibly involved herein. You

Database Test Guide

Database Test Guide

may inquire in the scope approved by laws and can only copy and print
this document in the legal scope specified by Copyright Law of the
People’s Republic of China. Without written authorization of BorayData,
any part or content of this document can’t be used, modified or
re-published by any organization or individual, otherwise it shall be
regarded as infringement and BorayData has the right to investigate their
responsibilities according to laws.
Information involved herein can be updated without further notice. In
case of any problem, please directly inform or inquire Weixun BorayData
Technology (Beijing) Co., Ltd.
All rights not expressly granted by the Company are reserved.
Communication mode is as follows:
Weixun BorayData Technology (Beijing) Co., Ltd.
Room 503, No.19 Building (T1), Poly International Plaza, No.7 Area of
Wangjing East Garden, Chaoyang District, Beijing
Telephone: +01064700868
Website: http://www.boraydata.cn

Trademark Declaration

is registered by Weixun BorayData Technology (Beijing)
Co., Ltd. at Trademark Office of China National Intellectual Property
Administration. Its exclusive use right is legally possessed by BorayData
and protected by laws. Without written approval of BorayData, any part
of the trademark shall not be used, copied, modified, transmitted,
transcribed or bundled with other parts for sales by any organization or
individual in any way. Any infringement of BorayData trademark right
will be investigated legally by BorayData.

Database Test Guide

Database Test Guide

Version Declaration
Products involved herein are Boray full-memory distributed analytical
database (RpdSql version) and the version of relevant dependent
packages is specified herein.

Version Date of Issue Effective Date Author Reviewer Approver
Current

Status

V1.0 April 6, 2021 April 6, 2021 Arman Official

Official

Official

Official

Official

Official

Official

Notes:
1. When using, please update “cover” and “revision history” to the cover and revision
history of this document, and delete the explanatory text.
2. V1.0 corresponds to 001 on the page footer, and V2.0 corresponds to 002, and so on.
3. If there is no reviewer and approver, please fill in the corresponding cell with “/”.

Contents
Copyright I
Disclaimer II
Trademark Declaration III

Database Test Guide

Database Test Guide

Version Declaration IV
1. Test Preparation 1

1.1 Hardware environment 1
1.2 Software environment 2
1.3 Recommended configuration 3

2、 Resource Monitoring 4
3、 Login and Use 5

3.1 RapidsDB user 5
3.2 Connector 5
3.3 RPDSQL privileges 6

4、 Basic Function Test 9
5、 Test Case 13

5.1 Table creating statements 14
5.2 Data preparation 21
5.3 Data import 21
5.4 Test statement 21
5.5 Test results 23

6、 TPCH Test 24
6.1 Data generation 24
6.2 Table creating statements 25
6.3 Data import 29
6.4 Data query 29
6.5 Query script 39

7、 POC Test Optimization 40
7.1 Data partition 40
7.2 Shard key 41

7.2.1 Type of shard key 41
7.2.2 Functions of shard key 42
7.2.3 Selection of shard key 44

7.3 Row table 45
7.3.1 Create row table 45
7.3.2 Row table index 46
7.3.3 Selection of table index 48

7.4 Column table 48
7.4.1 Create column table 48
7.4.2 Selection of table index 50

7.5 Unique key 51
7.6 Data skew 53

7.6.1 Understand data skew 53
7.6.2 View data skew 54

7.7 Leaf and aggregator 56
7.8 Code generation 58

8、 High availability test 61
9、 Concurrent Test 63

9.1 Window installation and use 63
9.2 Linux installation and use 68
9.3 Create data by JMeter 70

10、 Backup and Restoration 71
11、 Connect JAVA 72

Database Test Guide

Database Test Guide

1. Test Preparation

Before POC test, tester should check software and hardware of the

server, including memory, CPU, disk, system version, network etc., keep

records of server configuration and prepare for follow-up test plan and

test optimization at the same time.

1.1 Hardware environment
Now, let’s take configuration of node1 server as an example:

● Check CPU model:
[root@node1~]# cat /proc/cpuinfo | grep name | cut -f2 -d: | uniq -c

72 Intel(R) Xeon(R) Gold 5220 CPU @ 2.20GHz

● Check the number of physical CPU: 2
[root@node1~]# cat /proc/cpuinfo | grep 'physical id' | sort | uniq | wc -l

2

● Check the number of logic CPU: 72
[root@node1~]# cat /proc/cpuinfo | grep 'processor' | wc -l

72

● Check the memory size: 256GB
[root@node1~]# free -g

total used free shared buff/cache available

Mem: 253 230 6 0 16 10

Swap: 3 0 3

● Check network card: network card enp59s0f0 is 10 gigabit lan
[root@node1~]#ethtool enp59s0f0

Settings for enp59s0f0:

Supported ports: [FIBRE]

Supported link modes: 1000baseT/Full

1000baseKX/Full

10000 baseKR/Full

An example of hardware information collection table is shown below:
Server Configuration

CPU 40 Intel(R) Xeon(R) Silver 4210R

Database Test Guide

Database Test Guide

CPU @ 2.40GHz
Memory 128 GB

Hard disk 7.3 TB
Network Gigabit lan

1.2 Software environment

During operation according to this document, RapidsDB cluster has
been installed and arranged successfully in the test server (if not installed
and arranged, please refer to RapidsDBv4.2.3 Installation Manual) and
starting and stop commands have been known (please refer to
RapidsDBv4.2.3 Operation and Maintenance Manual) by default.
● Check version of operating system: CentOS7.6

[root@node1~]#cat/etc/centos-release

CentOS Linux release 7.6.1810 (Core)

● Check JDK and install openjdk:
[root@node1~]#java -version

openjdk version "1.8.0_282"

OpenJDK Runtime Environment (build 1.8.0_282-b08)

OpenJDK 64-Bit Server VM (build 25.282-b08, mixed mode)

[root@node1~]# yum install java-1.8.0-openjdk-devel //yum install openjdk

● Check IP address and hostname of the cluster:
[root@node1~]#cat /etc/hosts

192.168.0.A  node1

192.168.0.Bnode2

● Turn off the firewall:
[root@node1~]#systemctl stop firewalld

● Start zookeeper:
[root@node1 ~]# cd /opt/zookeeper/bin

[root@node1 bin]# ./zkServer.sh start

ZooKeeper JMX enabled by default

Using config: /data/zookeeper/bin/../conf/zoo.cfg

Starting zookeeper ... STARTED

[root@host20 bin]# ./zkServer.sh start

ZooKeeper JMX enabled by default

Using config: /data/zookeeper/bin/../conf/zoo.cfg

Starting zookeeper ... already running as process 20188. //it means successful startup

● Start RapidsDB cluster:

Database Test Guide

Database Test Guide

[root@node1 ~]# cd /opt/rdp/current

[root@node1 current]./bootstrapper.sh -a start

An example of cluster information collection table is show below:
Node
Name

Host Role Number of
Leaves

node01 128.64.252.1 Master N

node02 128.64.252.2 Leaf N

node03 128.64.252.3 Leaf N

An example of cluster information collection table is show below:
Software Name Description

Operating
system

CentOS 7.6

Database RapidsDB v4.2.3
JDK 1.8.0_282

1.3 Recommended configuration

Minimum Configuration Recommended
Configuration

CPU 2×2 cores 2×72 cores

Memory 4 GB 512 GB

Disk 100 GB SSD 2TB

Network card 1000MB 10GB/25GB

Operating system Above CentOS/RH 6.5 Above CentOS7.6

2、 Resource Monitoring

During testing, the customer may require monitoring resource

utilization during usage of database or data import. If there isn’t other

monitoring software or Rapids Manager, following methods can be used

for monitoring easily:

● Test the network speed:
[root@node1 ~]#sar -n DEV 1 100

//it represents one time executed per second, and 100 times executed in total.

Database Test Guide

Database Test Guide

It represents that bandwidth currently used by network card enp94s0f0 is
about: 7.2+1.8+16.9+1.8+0.48+8.67+23.99+8.67=70 MB/S
● Test I/O of the disk:

[root@node1 ~]#iostat-d -k 1 100

// it represents one time executed per second, and 100 times executed in total.

As database is included in the disk sdb, we can see that total i/o of the

disk is about 43MB/S (41.4+1.7) during data import.

3、 Login and Use

3.1 RapidsDB user

The user can log in and out through rapids-shell at the terminal and

the default user name is RAPIDS and the initial password is rapids.

RAPIDS user has all privileges:
[root@node1~]# cd /data/rdp/current

[root@node1current]# ./rapids-shell.sh

Please enter a username > rapids

Please enter the password for user 'RAPIDS' >

rapids >

We can alter the initial user password into 123456:
rapids > ALTER USER rapids PASSWORD '123456';

0 row(s) returned (1.22 sec)

Initial user can create and delete new user:

Database Test Guide

Database Test Guide

rapids > create user bigdata password 'bigdata';

0 row(s) returned (0.45 sec)

rapids > drop user bigdata ;

0 row(s) returned (1.12 sec)

3.2 Connector

We can firstly create database in the storage engine RPDSQL:
[root@node1~]# cd /data/rdp/rpdsql-ops

[root@node1rpdsql-ops]# ./rapids -P13306 //port number of master node during installation

of rpdsql

rapids > create database boraydata ;

Query OK, 1 row affected (14.36 sec)

rapids >quit ;

After quitting RPDSQL, enter RapidsDB again to create the

connector:
[root@node1rpdsql-ops]# cd /data/rdp/current

[root@node1current]# ./rapids-shell.sh

Please enter a username> rapids

Please enter the password for user 'RAPIDS' >

rapids > CREATE CONNECTOR BORAYDATA TYPE RPDSQL WITH

HOST='192.168.252.101',PORT=13306,USER='root',DATABASE='boraydata' NODE *

CATALOG * SCHEMA * TABLE *;

//where BORAYDATA is the name of the connector

//HOST is IP of node to be connected by the connector

//PORT is port number to be connected by the connector, and MASTER node or AGGREGATOR

node is used generally

//DATABASE is the name of database to be connected by the connector

rapids > show connectors; //check the information of the connector

rapids > use connector BORAYDATA; //use the connector

rapids > use connector rapids; //return to the no-connector status (otherwise, the system

determines that the connector BORAYDATA is being used, and the command of show connector

can’t be used)

rapids > drop connector BORAYDATA; //delete the connector

3.3 RPDSQL privileges

The following shows setting of user and privileges in RPDSQL,

Database Test Guide

Database Test Guide

which can be logged in through RPDSQL without password in the initial
state:

[root@node1~]# cd /data/rdp/rpdsql-ops

[root@node1rpdsql-ops]# ./rapids -P13306 //port number of master node during installation

of rpdsql

rapids > //login successfully

rapids >create user test1 identified by '123456'; //create new user and add a password

rapids >create user test2 ; //create new user without password

rapids > show users; //check the number of current users

+--------------+--------+-------------+------------+-----------------------+
| User | Type | Connections | Is deleted | Default resource pool |
+--------------+--------+-------------+------------+-----------------------+
'root'@'%'	Native	65		
'test1'@'%'	Native	0		
'test2'@'%'	Native	0		
+--------------+--------+-------------+------------+-----------------------+
rapids >quit; //quit

Then, we log in database through user test1:
[root@node1rpdsql-ops]# ./rapids -P13306 -u test1 -p //specify a user name

Enter password://enter password 123456

rapids > //login successfully

User privileges, statements and relevant parameters are shown below:
GRANT priv_type [, priv_type [...]] ON priv_level

TO user_or_role [, user_or_role [...]]
[WITH GRANT OPTION]
[REQUIRE {SSL | NONE}]

priv_type:

ALL PRIVILEGES | SELECT | INSERT | UPDATE | DELETE | CREATE | DROP | RELOAD |
PROCESS | FILE READ | FILE WRITE | INDEX | ALTER | SHOW METADATA | GRANT
OPTION | SUPER | CREATE TEMPORARY TABLES | LOCK TABLES | CREATE VIEW |
SHOW VIEW | CREATE USER | CLUSTER | ALTER VIEW | DROP VIEW | BACKUP |
CREATE DATABASE | DROP DATABASE | CREATE PIPELINE | DROP PIPELINE | ALTER
PIPELINE | START PIPELINE | SHOW PIPELINE | EXECUTE | CREATE ROUTINE | ALTER
ROUTINE | CREATE LINK | DROP LINK | SHOW LINK
priv_level:

*
| *.*
| database.*
| database.table
user_or_role:

user [, user]
| role
user:

'user_name'@'host_name' [IDENTIFIED BY 'password']

Database Test Guide

Database Test Guide

role:

ROLE'role_name'
Now we log in the database at test1, its detailed information is as follows
and there are no privileges:

rapids> show databases;

+--------------------+
| Database |
+--------------------+
| information_schema |
+--------------------+
1 row in set (0.00 sec)

We switch to root user to grant all privileges, operated as follows:
[root@node1rpdsql-ops]# ./rapids -P13306

rapids> GRANT ALL PRIVILEGES ON *.* TO 'test1'@'%' identified by '123456' WITH
GRANT

OPTION; //represent granting all privileges
Query OK, 0 rows affected (0.27 sec)
rapids>quit;

After switching back to test1 user:
[root@node1rpdsql-ops]# ./rapids -P13306 -u test1 -p

Enter password://enter password 123456

rapids> show databases;
+--------------------+
| Database |
+--------------------+
| cluster |
| dbtest |
| information_schema |
| test1 |
+--------------------+
9 rows in set (0.00 sec)

For new user, we should give special instructions during creation of the
connector, for example:

[root@node1rpdsql-ops]# cd /data/rdp/current

[root@node1current]# ./rapids-shell.sh

Please enter a username > rapids

Please enter the password for user 'RAPIDS' >

rapids > CREATE CONNECTOR TEST TYPE RPDSQL WITH

HOST='192.168.252.101',PORT=13306,USER='test1',PASSWORD='123456',DATABASE='bora

ydata' NODE * CATALOG * SCHEMA * TABLE *;

rapids > use connector TEST;

Database Test Guide

Database Test Guide

4、 Basic Function Test

We firstly test basic functions of database, including addition, deletion

and alteration, and transaction support etc.

● In case of bulk writing from other database, database name should be

added before the table name:
rapids > insert into testdataselect * from boray.bigdata

//structure of two table should be consistent and testdata of the table should be included in

the current database

● Bulk deletion of data:
rapids > delete from testdata where id<100

//delete data about specific row

● Bulk alteration of data:
rapids > update testdata price = replace (price , '50','100');

//alter the value in the column of price, and value of primary key can’t be altered

● Truncate table data:
rapids > truncate table testdata;

//truncate all (please use with caution if in a non-transaction situation)

● Data import

Parameters for importing CSV and TXT files are shown below:
LOAD DATA [LOCAL] INFILE '<file_name>'

[REPLACE | IGNORE | SKIP { ALL | CONSTRAINT | DUPLICATE KEY | PARSER }

ERRORS]

INTO TABLE <table_name>

[CHARACTER SET <character_set_name>]

[{FIELDS | COLUMNS}

[TERMINATED BY '<string>'] [[OPTIONALLY] ENCLOSED BY '<char>'] [ESCAPED BY

'<char>']]

[LINES

[STARTING BY '<string>']

[TERMINATED BY '<string>']]

Database Test Guide

Database Test Guide

[TRAILING NULLCOLS]

[NULL DEFINED BY <string> [OPTIONALLY ENCLOSED]]

[IGNORE <number> LINES]

[({<column_name> | @<variable_name>}, ...)]

[SET <column_name> = <expression>,...]

[WHERE <expression>,...]

[MAX_ERRORS <number>]

[ERRORS HANDLE <string>])

Example for importing CSV file also applies to TXT file:
rapids > LOADDATA INFILE 'foo.csv' INTO TABLE foo (fourth, third, second, first);

//if column sequence is inconsistent with column sequence of data file during table creation,

you can name them explicitly.

rapids > LOAD DATA INFILE 'foo.txt' INTO TABLE foo (bar, @, @, baz);

//you can use @ symbol to skip the column in the source file. Only the first and the fourth

columns are imported to the table.

rapids >LOAD DATA INFILE 'foo.csv' INTO TABLE foo COLUMNS TERMINATED BY

',';

//data representing each column should be separated by commas, and COLUMNS can be

replaced by FIELDS

rapids > LOAD DATA INFILE 'numbers.txt' INTO TABLE foo COLUMNS TERMINATED

BY ','

TRAILING NULLCOLS; //it means that NULL is used to complement the null

value

rapids > load data infile "/tmp/harara.sql" replace into table orders fields terminated by ','

enclosed by '"' escaped by '\';

//it means enclosing data content in the text to prevent interference by other

characters

Parameters for importing JSON files are shown below:

LOAD DATA [LOCAL] INFILE 'file_name'

[REPLACE | SKIP { CONSTRAINT | DUPLICATE KEY } ERRORS]

INTO TABLE tbl_name

Database Test Guide

Database Test Guide

FORMAT JSON

subvalue_mapping

[SET col_name = expr,...]

[WHERE expr,...]

[MAX_ERRORS number]

[ERRORS HANDLE string]

subvalue_mapping:

({col_name | @variable_name} <- subvalue_path [DEFAULT literal_expr], ...)

subvalue_path:

{% | [%::]ident [::ident ...]}

An example for importing JSON file is shown below:
//for the following data

{"a":{"b":1}, "c":null}

{"a":{"b":2}, "d":null}

rapids > create table t (a INT);

rapids > LOAD DATA LOCAL INFILE "example.json" INTO TABLE t(a <- a::b) FORMAT

JSON;

rapids > select * from t;

a
-
2
1

2 row(s) returned (0.01 sec)
● Data export

Let’s take export of CSV file as an example:
rapids > SELECT * FROM testdata INTO OUTFILE '/data/testdata.csv' FIELDS

TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' LINES TERMINATED

BY '\n';

//you can specify the contents, and specify which separator is used to divide the data in each row.

Row change character is used directly in this example.

● Transaction support

Now, we test the simple transaction support, as follows:
rapids > SELECT * FROM test1;

id name
-- ----

40 Nick

Database Test Guide

Database Test Guide

30 Jim
We give UPDATE test1:

rapids >BGIN;

rapids > update test1 set name = "John" where ID=300; //operate without error

rapids > SELECT * FROM test1; //as there isn’t matched ID, UPDATE fails

id name
-- ----

40 Nick
30 Jim

rapids >ROLLBACK //so, rollback is operated
Then, we give UPDATE test2:

rapids >BGIN;

rapids > update test1 set name = "Jimmmy" where ID=30; //it prompts returning to 1 row

sucessfully

1 row(s) returned (0.00 sec)
rapids > SELECT * FROM test1;

id name
-- ----

40 Nick
30 Jimmmy

rapids >ROLLBACK //as value is altered incorrectly, i.e. typing Jimmy to Jimmmy, rollback
is operated.

rapids > SELECT * FROM test1; //return to the initial value
id name

-- ----
40 Nick
30 Jim
Finally, we give UPDATE test3:

rapids >BGIN;

rapids > update test1 set name = "Jimmy" where ID=30; //it prompts returning to 1 row

sucessfully

1 row(s) returned (0.00 sec)
rapids > SELECT * FROM test1;

id name
-- ----

40 Nick
30 Jimmy

rapids >COMMIT //all is well and transaction is committed.
rapids > SELECT * FROM test1; //altered results
id name

-- ----
40 Nick
30 Jimmy

Database Test Guide

Database Test Guide

5、 Test Case

The following is about history test cases. User test case in the
business industry is selected. Test background is that the customer wants
to optimize performance of accurate analysis of user portraits held by
their customer managers, as traditional database is suffering from larger
analysis pressure for query with randomly associated conditions from
multiple large wide tables, and less analysis performance, with expansion
of business index and business data. By virtue of distributed system
structure based on memory, RapidsDB shows excellent performance
advantages. On the test site, the customer provides three physical
machines for preparation, detailed as follows:
5.1 Table creating statements

In the early stage of the test, it’s necessary to communicate with the
customer and obtain table structure of business data to be tested in the
first place, and analyze whether table structure needs to be adjusted or
optimized (considering creation of row table or column table). Specific
table creating statements are shown below (statements for creating
column table are shown below):
create table CST_BSC_INF_DPLT(
CST_ID CHAR(18),
IP_ID VARCHAR(19),
IP_NM_LND_CD CHAR(2),
CST_LGL_NM VARCHAR(600),
ID_INF_NO VARCHAR(120),
IDY_CD VARCHAR(5),
ENTP_SZ_CD CHAR(2),
CPCT_TPCD CHAR(6),
CPCT_CCB_OPNACC_YRLMT NUMERIC(3),
CPCT_CRGRD_CD CHAR(4),
KEY_CST_TPCD CHAR(2),
HQ_STRTG_CST_IND CHAR(1),
CST_BLIY_CGY_CD VARCHAR(5),
CST_BLIY_LRGCLSS_CD VARCHAR(5),
CST_BLIY_MDLCLS_CD VARCHAR(5),
ITNLSETLKEYCSTTPCD CHAR(4),
XAREAGRP_IND CHAR(1),
SPCL_IDY_IND CHAR(1),
HV_CRPND_RULE_IND CHAR(1),
GRPCST_IND CHAR(1),
CRCST_IND CHAR(1),
SML_ECST_IND CHAR(1),
CPCT_REL_MGT_FCN_CD CHAR(2),
CST_HOST_INSID CHAR(9),
EMPID CHAR(8),

Database Test Guide

Database Test Guide

ORG_CHAR_CD CHAR(4),
BSC_DEP_ACC_DEPBNK_CD CHAR(6),
LGL_RPRS_NM VARCHAR(180),
IP_EXT_ID VARCHAR(240),
RGST_CPAMT NUMERIC(19,3),
RGST_CPTL_CCYCD CHAR(3),
CMNT_2 VARCHAR(600),
ORG_ESTB_DT DATE,
ORG_OPRT_SCOP_DSC VARCHAR(900),
ORGACINCCPTL_AMT NUMERIC(19,3),
ENTFNDDPSNECNCMPCD CHAR(3),
CTYRGON_CD CHAR(3),
ADIV_CD CHAR(6),
DEPT_CGY_DSC VARCHAR(10),
ORG_MAINBSN_DSC VARCHAR(600),
ORG_MIX_BSN_DSC VARCHAR(600),
ORGQF_GRD_CD VARCHAR(4),
PNPPD_AND_BRND_DSC VARCHAR(240),
MKT_LOT NUMERIC(10),
FST_CR_REL_DT DATE,
HV_LGLPSN_QUA_IND CHAR(1),
DEP_ACC_TPCD CHAR(3),
PARCO_IND CHAR(1),
GRP_ID VARCHAR(19),
CST_CSTGRP_REL_TPCD CHAR(7),
CST_MGRP_ID CHAR(20),
PRJ_LGLPSN_IND CHAR(1),
LCL_YRMO_DAY DATE,
LCL_HR_GRD_SCND CHAR(9),
MULTI_TENANCY_ID CHAR(5),
CST_CUR_STCD CHAR(6),
POD NUMERIC(8,5),
CRLNASTRSK_CL_RSLT_CD CHAR(2),
STDT DATE,
EXDAT DATE,
LOAD_TM DATE,
BTCH_NO VARCHAR(100),
PRJ_FNL_RTG_GRD_CD CHAR(4),
TMS TIMESTAMP,
RMRK_1 VARCHAR(3000),
RMRK_2 VARCHAR(3000),
INPT_TM TIMESTAMP,
TXN_DT DATE,
LAST_UDT_DT_TM DATE,
CPRSVCHRTC_CST_GRD_CD CHAR(3),
CST_SCRN_RSLT_TPCD CHAR(1),
CST_SCRN_RSLT_DSC VARCHAR(600),
CPCT_ISBOND_IND VARCHAR(8),
BSC_DAT_DEPBNK_ENG_NM VARCHAR(128),
BSC_DEP_ACC_DPBNK VARCHAR(600),
CST_ENG_NM VARCHAR(600),
CST_LO_ZON VARCHAR(600),
CST_WBT_CITY VARCHAR(600),

Database Test Guide

Database Test Guide

CST_WBT_PROV VARCHAR(600),
AGNCBNK_IND VARCHAR(1),
ENLND_BK_IND VARCHAR(1),
IDY_RTG VARCHAR(2),
ASPD_ID VARCHAR(8),
TRDPT_CST_ID VARCHAR(23),
/*!90621 UNIQUE KEY pk (`CST_ID`,`MULTI_TENANCY_ID`) UNENFORCED RELY, */
/*!90618 SHARD */ KEY (`CST_ID`) /*!90619 USING CLUSTERED COLUMNSTORE */
);
create table CST_CPRSV_INF (
CST_ID CHAR(18),
DATA_DT DATE,
CST_NM VARCHAR(240),
CPCT_CRGRD_CO CHAR(4),
ORGQF_GRO_CD VARCHAR(4),
RGST_CPTL_NVAL NUMERIC(19,2),
GRP_NM VARCHAR(600),
CRGLN NUMERIC(19,2),
USED_LMT NUMERIC(19,2),
DEP_BAL NUMERIC(15,2),
DEP_AADBAL NUMERIC(17,2),
DEP_INTEXP_AMT NUMERIC(17,2),
CPCT_OTHR_LNBAL NUMERIC(19,2),
CPCT_LQUD_FNDS_LNBAL NUMERIC(21,4),
CPCT_SSPCS_CGY_LNBAL NUMERIC(21,4),
CPCT_FCS_CGY_LNBAL NUMERIC(21,4),
CPCT_FIX_AST_LNBAL NUMERIC(19,2),
CPCT_LNBAL NUMERIC(15,2),
COLL_INT_BAL NUMERIC(19,2),
CPCT_SCND_CGY_LNBAL NUMERIC(21,4),
CPCT_BDLNRT NUMERIC(7,5),
OFFBALSHET_BAL NUMERIC(17,2),
CPCTNONLGOFBALSHETBAL NUMERIC(19,2),
CPCT_LGNT_BAL NUMERIC(19,2),
CPCT_RGLR_CGY_LNBAL NUMERIC(21,4),
RECINT NUMERIC(15,2),
LC_BAL NUMERIC(15,2),
CPCT_BL_DSCT_LNBAL NUMERIC(21,4),
CPCT_LOSS_CGY_LNBAL NUMERIC(21,4),
CPCT_HOLD_PD_NUM NUMERIC(10),
FNC_TNUM_BAL NUMERIC(17,2),
CRNYR_DBT_TDNUM NUMERIC(10),
CRNYR_DHAMT NUMERIC(19,2),
CRNYR_CR_TDNUM NUMERIC(10),
CRNYR_CR_HPNAM NUMERIC(19,2),
INR_SFT_EXPN_AMT NUMERIC(31,10),
INR_SFT_INCMAM NUMERIC(17,2),
CST_CTB_NVAL NUMERIC(15,2),
CPCT_DEP_GRSINCMAMT NUMERIC(15,2),
LNIN_INCMAM NUMERIC(17,2),
CPCT_ASTCGYPD_INCMAM NUMERIC(19,2),
CPCT_INTRBSN_INCM_PCT NUMERIC(19,8),
CRNMO_INTRBSN_INCMAM NUMERIC(31,10),

Database Test Guide

Database Test Guide

INTRBSN_EXPN_AMT NUMERIC(17,2),
CPCTINTRBSNGRSINCMAMT NUMERIC(15,2),
RT12MOCPCIBGRSINCMAMT NUMERIC(17,2),
CPCT_PREV_ANUL_SETAMT NUMERIC(19,2),
CPCTPREVANULSETL_DNUM NUMERIC(10),
CPCTRTOLYCPSAMTINCRRT NUMERIC(10,5),
CPCTRTOLYCPSDNMINCRRT NUMERIC(10,5),
CPCT_CRNYR_CNY_SETAMT NUMERIC(19,2),
CPCT_BADB_LNBAL NUMERIC(21,4),
CPCT_WTRCSM NUMERIC(17,4),
CPCT_ELCCSM NUMERIC(17,4),
CPCT_PRJ_RSRV_NUM NUMERIC(10),
LOAD_TM DATE,
BICH_NO VARCHAR(100),
DEP_MO_DABAL NUMERIC(17,2),
LN_AADBAL NUMERIC(17,2),
LN_MO_DABAL NUMERIC(17,2),
CPCT_EVA_VAL NUMERIC(19,2),
CRNYR_FNCLTX_DNUM NUMERIC(17,2),
INTRBSN_NET_INCMAM NUMERIC(17,2),
CCB_BSCACC_DPSKINNO CHAR(9),
MULTI_TENANCY_ID CHAR(5),
CPCT_RAROC_RATE NUMERIC(19,8),
CRNYR_INTRBSN_INCMAM NUMERIC(15,2),
LAST_UDT_DT_TM DATE,
RCRD_UDT_LCL_DT DATE,
RCRD_UDT_LCL_TM CHAR(6),
TXN_DT DATE,
OBSBSN_AADBAL NUMERIC(15,2),
CR_BAL NUMERIC(15,2),
CRNMO_CF_CVR NUMERIC(19,2),
LYSP_CR_HPNAM NUMERIC(19,2),
CRNMO_CR_HPNAM NUMERIC(19,2),
LYSP_CR_TDNUM NUMERIC(10),
CRNMO_CR_TDNUM NUMERIC(10),
LYSP_DHAMT NUMERIC(19,2),
CRNMO_DHAMT NUMERIC(19,2),
LYSP_DBT_TDNUM NUMERIC(10),
CRNMO_DBT_TDNUM NUMERIC(10),
/*!90621 UNIQUE KEY pk (`CST_ID`,`DATA_DT`) UNENFORCED RELY, */
/*!90618 SHARD */ KEY (`CST_ID`) /*!90619 USING CLUSTERED COLUMNSTORE */
);
CREATE TABLE LNACC_INF (
ACC_ID VARCHAR(40),
DATA_DT DATE,
CST_ID CHAR(18),
CCYCD CHAR(3),
DEPBNK_ID VARCHAR(19),
CR_ACCNM VARCHAR(600),
CRG_VRTY_ID CHAR(8),
CR_VRTY_NM VARCHAR(600),
CPCT_LNBAL NUMERIC(15,2),
IN_AADBAL NUMERIC(17,2),

Database Test Guide

Database Test Guide

CTR_ID VARCHAR(240),
CTR_AMT NUMERIC(15,2),
LOAN_YR_INTRT NUMERIC(10,6),
ACC_ST CHAR(7),
STDT DATE,
EXDAT DATE,
FST_DSBR_DT DATE,
PNP_RCYC_AMT NUMERIC(19,2),
NONACRALRDY_EXP_PNAMT NUMERIC(15,2),
ODUAMT NUMERIC(19,8),
LOAD_TM DATE,
BTCH_NO VARCHAR(100),
MULTI_TENANCY_ID CHAR(5),
LDGR_INSID CHAR(9),
LAST_UDT_DT_TM DATE,
RCRD_UDT_LCL_DT DATE,
RCRD_UDT_LCL_TM CHAR(6),
TXN_DT DATE,
GRTSTL_CMNT VARCHAR(150),
LNACC_INTICM_AMT NUMBER(19,2),
/*!90621 UNIQUE KEY pk (`ACC_ID`,`CST_ID`) UNENFORCED RELY, */
/*!90618 SHARD */ KEY (`ACC_ID`) /*!90619 USING CLUSTERED COLUMNSTORE */
);

CREATE TABLE INST_CST_DLY_INF (
CST_ID CHAR(18),
INST_ECD CHAR(9),
DATA_DT DATE,
CST_NM VARCHAR(240),
CST_SZ_CD CHAR(2),
CORP_DEP_BAL NUMERIC(17,2),
CORP_DEP_AADBAL NUMERIC(17,2),
ACC_NUM NUMERIC(6),
CRN_BAL NUMERIC(15,2),
TRM_BAL NUMERIC(15,2),
SMBSN_DEP_BAL NUMERIC(17,2),
SMBSN_DEP_AADBAL NUMERIC(17,2),
FNCL_DEP_BAL NUMERIC(17,2),
FNCL_DEP_AADBAL NUMERIC(17,2),
CORP_LNBAL NUMERIC(17,2),
CORP_LN_AADBAL NUMERIC(17,2),
TRDFNC_AADBAL NUMERIC(17,2),
BRKEVN_CHRTC_BAL NUMERIC(17,2),
NON_BRKEVN_CHMTPD_BAL NUMERIC(17,2),
CPCT_NON_DSCT_LNBAL NUMERIC(19,2),
CPCT_LQUD_FNDS_LNBAL NUMERIC(21,4),
CPCT_FIX_AST_LNBAL NUMERIC(19,2),
CPCTRLESTDVPOPRTLNBAL NUMERIC(21,4),
CPCTIDFCYHS_CGY_LNBAL NUMERIC(19,2),
CPCTFCTRNAVPYMTITMBAL NUMERIC(19,2),
CPCT_BL_DSCT_LNBAL NUMERIC(21,4),
CPCTNONDSCT_LN_AADBAL NUMERIC(19,2),
CPCTLQUDFNDSLN_AADBAL NUMERIC(19,2),

Database Test Guide

Database Test Guide

CPCTFIX_AST_LN_AADBAL NUMERIC(19,2),
CPCTRLESTCGYLN_AADBAL NUMERIC(19,2),
CPCTIDFCYHSCGYLAADBAL NUMERIC(19,2),
CPCTFCTRNADVPTIAADBAL NUMERIC(19,2),
CPCT_DSCT_AADBAL NUMERIC(19,2),
CORP_LNACC_NUM NUMERIC(10),
CPCTOTHRINSTLNACC_NUM NUMERIC(10),
CPCTACPT_DRFTBILL_BAL NUMERIC(19,2),
CPCT_DMST_LGNT_BAL NUMERIC(19,2),
CPCT_OVSEA_LGNT_BAL NUMERIC(19,2),
CPCT_RGLR_CGY_LNBAL NUMERIC(21,4),
CPCT_SCND_CGY_LNBAL NUMERIC(21,4),
CPCT_SSPCS_CGY_LNBAL NUMERIC(21,4),
CPCT_LOSS_CGY_LNBAL NUMERIC(21,4),
CPCT_FCS_CGY_LNBAL NUMERIC(21,4),
LOANTODEPRTO NUMERIC(19,2),
CPCT_HOLD_PD_NUM NUMERIC(10),
LOAD_TM DATE,
BTCH_NO VARCHAR(100),
MULTI_TENANCY_ID CHAR(5),
CPCTBRKEVNCFADCMDPBAL NUMERIC(17,2),
CPCT_ADVDEP_BAL NUMERIC(21,4),
CPCT_AGRM_DEP_BAL NUMERIC(21,4),
CPCTBIGAMTCTFOFDEPBAL NUMERIC(21,4),
CPCT_STC_DEP_BAL NUMERIC(21,4),
CPCT_NRA_DEP_BAL NUMERIC(21,4),
CPCT_INST_DEP_BAL NUMERIC(21,4),
CPCT_PRVDFND_DEP_BAL NUMERIC(21,4),
CPCT_FTA_DEP_BAL NUMERIC(21,4),
LAST_UDT_DT_TM DATE,
RCRD_UDT_LCL_DT DATE,
RCRD_UDT_LCL_TM CHAR(6),
TXN_DT DATE,
DEP_MO_DABAL NUMERIC(13,2),
CORP_CR_AADBAL NUMERIC(19,2),
CORP_CR_BAL NUMERIC(19,2),
NEW_LOANTODEPRTO NUMERIC(19,2),
/*!90621 UNIQUE KEY pk (`CST_ID`,`DATA_DT`) UNENFORCED RELY, */
/*!90618 SHARD */ KEY (`CST_ID`) /*!90619 USING CLUSTERED COLUMNSTORE */
);

5.2 Data preparation
Table Name Column

Number
Data Size Data Volume

CST_BSC_INF_DPLT 84 11GB 15,867,399
CST_CPRSV_INF 82 5.8GB 17,322,047

INST_CST_DLY_INF 65 14GB 53,328,065
LNACC_INF 30 7.6GB 27,097,498

Actual data volume of the business is shown above. If the tester
wants to copy the test process, please use JMeter to create data to fill the

Database Test Guide

Database Test Guide

table according to 9.3.
5.3 Data import

rapids > load data infile'/home/dataCST_BSC_INF_DPLT.csv' into table

CST_BSC_INF_DPLT

fields terminated by '|' lines terminated by '|\n'; //alter the delimiter according to

actual data

15,867,399 row(s) returned (26.55 sec)

rapids > load data infile'/home/data/CST_CPRSV_INF.csv' into table CST_CPRSV_INF

fields

terminated by '|' lines terminated by '|\n'; //alter the delimiter according to actual

data

17,322,047 row(s) returned (28.24 sec)

rapids > load data infile'/home/data/INST_CST_DLY_INF.csv' into table

INST_CST_DLY_INF

fields terminated by '|' lines terminated by '|\n'; //alter the delimiter according to

actual data

53,328,065 row(s) returned (74.36 sec)

rapids > load data infile'/home/data/LNACC_INF.csv' into table LNACC_INF

fields terminated by '|' lines terminated by '|\n'; //alter the delimiter according to

actual data

27,097,498 row(s) returned (40.11 sec)

5.4 Test statement

In the early stage of the test, it’s necessary to ask for SQL of
business to be tested along with communication about customer demand
and table structure, prepare in advance, and check whether all functions
can be supported and whether SQL statement needs to be altered or
optimized. Actual business statements of the customer are shown below:

SQL 1:
select t.CST_ID,
t.IP_ID,

t.CST_LGL_NM,
t.ID_INF_NO,
t.CPCT_TPCD,

t1.DEP_BAL,
t1.DEP_AADBAL,
t1.DEP_INTEXP_AMT,
t1.CPCT_OTHR_LNBAL,

Database Test Guide

Database Test Guide

t1.CPCT_LQUD_FNDS_LNBAL,
t2.CTR_AMT,
t2.STDT,
t2.FST_DSBR_DT,
t2.PNP_RCYC_AMT,
t2.ODUAMT,
t3.CORP_DEP_BAL,
t3.ACC_NUM,
t3.CRN_BAL,
t3.TRM_BAL,
t3.SMBSN_DEP_BAL

from CST_BSC_INF_DPLT t
left join CST_CPRSV_INF t1 on t.CST_ID = t1.CST_ID and DATA_DT ='2020-06-30'
left join (select CST_ID,
sum(CTR_AMT) as CTR_AMT,
min(STDT) AS STDT,
min(FST_DSBR_DT) AS FST_DSBR_DT,

sum(PNP_RCYC_AMT) AS PNP_RCYC_AMT,
sum(ODUAMT) AS ODUAMT

from LNACC_INF where DATA_DT='2020-06-20' AND CCYCD='156' AND
ACC_ST='0002002'

group by CST_ID) t2
on t.CST_ID=t2.CST_ID

left join (select CST_ID,
sum(CORP_DEP_BAL) AS CORP_DEP_BAL,

sum(ACC_NUM) AS ACC_NUM,
sum(CRN_BAL) AS CRN_BAL,
sum(SMBSN_DEP_BAL) AS SMBSN_DEP_BAL,
sum(CPCT_HOLD_PD_NUM) AS CPCT_HOLD_PD_NUM

from INST_CST_DLY_INF where DATA_DT='2020-07-29' GROUP
BY CST_ID) t3

on t.CST_ID=t3.CST_ID
where t.ENTP_SZ_CD = '30'
AND t.CPCT_TPCD = '010000'
and t1.CRGLN>= 0
and t3.CPCT_HOLD_PD_NUM >=3
and t3.CORP_DEP_BAL >=1000000

SQL 2:
select t.CST_ID,

t1.CST_NM
from CST_BSC_INF_DPLT t

left join CST_CPRSV_INF t1
on t.CST_ID=t1.CST_ID

and t1.DATA_DT=date('2020-06-30')
and t1.DEP_BAL>=10000
and t1.CPCT_LNBAL>=10000

left join (select CST_ID from LNACC_INF
where DATA_DT=date('2020-06-20')

and CPCT_LNBAL>=10000
and LN_AADBAL>=10000

group by CST_ID) t2
on t.CST_ID=t2.CST_ID

Database Test Guide

Database Test Guide

left join (select CST_ID from INST_CST_DLY_INF
where DATA_DT=date('2020-07-29')

and CRN_BAL>=10000
AND CORP_LNBAL>=10000

group by CST_ID) t3
on t.CST_ID=t3.CST_ID

WHERE t1.CST_ID is not null
and t2.CST_ID is not null
and t3.CST_ID is not null

5.5 Test results

Result comparison:
SQL Row Table Column Table

SQL 1 5.82 sec 0.86 sec

SQL 2 2.68 sec 2.76 sec

Result analysis:

It can be found through result comparison that a quick query speed

can be kept in tha column table by SQL1, and there is no difference in

SQL2. By comparing SQL statements, we can find that query

performance of column table is better when querying among many

columns, and query performance of row table is outstanding when

complicatedly querying among less columns due to limit of its index

number. So, in different business cases, different table creating methods

can be flexibly selected for optimization.

As Boray distributed memory databased is based on the advantage of

memory, we can find that two query methods are very fast and give

response in seconds. Therefore, time difference between two tables is

jointly determined by their respective strengths and weaknesses, as well

as the volume of the data.

6、 TPCH Test

Common POC test is based on TPC Benchmark H (TPC-H). TPCH

Database Test Guide

Database Test Guide

is a decision support criteria and composed of a series of altered query
and parallel data oriented to business application. Query selected in the
benchmark and data that constitutes the database are widely
representative in business and easy to implement, and support the
analysis of large amounts of data, the execution of highly complicated
query, and the answering of key and frequently answered business
questions.
6.1 Data generation

TPCH data generation can be conducted by generating the script
tpch-tool.3.0.tar file from specific TPCH data. The file can be
downloaded from the file server (download address:
http://192.168.10.6:8080/sales_presales/%e4%ba%a7%e5%93%81/%e4
%ba%a7%e5%93%81%e5%ae%89%e8%a3%85%e6%96%87%e6%a1%
a3/TPCH%e6%b5%8b%e8%af%95/%e5%ae%89%e8%a3%85%e4%bb
%8b%e8%b4%a8/). After the compressed package is uploaded to the
virtual machine and decompressed, it can be used. As data generation
needs a large space, it is recommended to decompress the file to a
directory with a large disk capacity. In the following, we take the data
directory as an example, which enters the file directory dbgen after
decompression:

[root@node1~]# cd /data

[root@node1data]#tar -xvf tpch-tool.3.0.tar

[root@node1data]#cd /tpch-tools/dbgen

Now, we provide two data generation modes, i.e. common mode and
running in the background. If the amount of data generated is too large,
it’s recommended to take the second mode to prevent disconnection with
the server due to computer sleep. Generation of 100GB data is taken as an
example below:

[root@node1dbgen]# ./dbgen -vf -s 100

[root@node1dbgen]#nohup ./dbgen -vf -s 100 &

After data generation, eight text files with the suffix .tbl will appear
in the file directory to represent eight tables during TPCH test. Then, it’s
neesary to transform it into CSV files and store in the specified path:

[root@node1dbgen]# rename .tbl .csv *.tbl

[root@node1dbgen]# mv *.csv /data/tpch100g //create data storage file in advance

6.2 Table creating statements

Name of all tables involved during TPCH test and table relationship are

Database Test Guide

Database Test Guide

shown below:

No. Table Name No. Table Name

1 customer 5 part

2 lineitem 6 partsupp

3 nation 7 region

4 orders 8 supplier

During TPCH, as test data is large in most cases, we create column
table for large table and replication table for small table. Table creating
statements are shown below:

rapids > CREATE TABLE `customer` (
`c_custkey` int(11) NOT NULL,
`c_name` varchar(25) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,

`c_address` varchar(40) CHARACTER SET utf8 COLLATE utf8_general_ci NOT
NULL,

Database Test Guide

Database Test Guide

`c_nationkey` int(11) NOT NULL,
`c_phone` char(15) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
`c_acctbal` decimal(15,2) NOT NULL,

`c_mktsegment` char(10) CHARACTER SET utf8 COLLATE utf8_general_ci NOT
NULL,
`c_comment` varchar(117) CHARACTER SET utf8 COLLATE utf8_general_ci NOT
NULL,
UNIQUE KEY pk (`c_custkey`) UNENFORCED RELY,
SHARD KEY (`c_custkey`) USING CLUSTERED COLUMNSTORE

);

rapids >CREATE TABLE `lineitem` (
`l_orderkey` bigint(11) NOT NULL,
`l_partkey` int(11) NOT NULL,
`l_suppkey` int(11) NOT NULL,
`l_linenumber` int(11) NOT NULL,
`l_quantity` decimal(15,2) NOT NULL,
`l_extendedprice` decimal(15,2) NOT NULL,
`l_discount` decimal(15,2) NOT NULL,
`l_tax` decimal(15,2) NOT NULL,
`l_returnflag` char(1) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
`l_linestatus` char(1) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
`l_shipdate` date NOT NULL,
`l_commitdate` date NOT NULL,
`l_receiptdate` date NOT NULL,

`l_shipinstruct` char(25) CHARACTER SET utf8 COLLATE utf8_general_ci NOT
NULL,
`l_shipmode` char(10) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,

`l_comment` varchar(44) CHARACTER SET utf8 COLLATE utf8_general_ci NOT
NULL,
UNIQUE KEY pk (`l_orderkey`, `l_linenumber`) UNENFORCED RELY,
SHARD KEY (`l_orderkey`) USING CLUSTERED COLUMNSTORE

);

rapids >CREATE reference TABLE nation (
n_nationkeyint(11) NOT NULL,
n_namevarchar(25) NOT NULL,
n_regionkeyint(11) NOT NULL,
n_commentvarchar(152) NOT NULL,
PRIMARY KEY (n_nationkey));

rapids >CREATE TABLE `orders` (
`o_orderkey` bigint(11) NOT NULL,
`o_custkey` int(11) NOT NULL,

`o_orderstatus` char(1) CHARACTER SET utf8 COLLATE utf8_general_ci NOT
NULL,
`o_totalprice` decimal(15,2) NOT NULL,
`o_orderdate` date NOT NULL,
`o_orderpriority` char(15) CHARACTER SET utf8 COLLATE utf8_general_ci NOT
NULL,
`o_clerk` char(15) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
`o_shippriority` int(11) NOT NULL,

Database Test Guide

Database Test Guide

`o_comment` varchar(79) CHARACTER SET utf8 COLLATE utf8_general_ci NOT
NULL,
UNIQUE KEY pk (`o_orderkey`) UNENFORCED RELY,
SHARD KEY (`o_orderkey`) USING CLUSTERED COLUMNSTORE

);

rapids >CREATE TABLE `part` (
`p_partkey` int(11) NOT NULL,
`p_name` varchar(55) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
`p_mfgr` char(25) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
`p_brand` char(10) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
`p_type` varchar(25) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
`p_size` int(11) NOT NULL,
`p_container` char(10) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
`p_retailprice` decimal(15,2) NOT NULL,
`p_comment` varchar(23) CHARACTER SET utf8 COLLATE utf8_general_ci NOT

NULL,
UNIQUE KEY pk (`p_partkey`) UNENFORCED RELY,

SHARD KEY (`p_partkey`) USING CLUSTERED COLUMNSTORE
);

rapids >CREATE TABLE `partsupp` (
`ps_partkey` int(11) NOT NULL,
`ps_suppkey` int(11) NOT NULL,
`ps_availqty` int(11) NOT NULL,
`ps_supplycost` decimal(15,2) NOT NULL,
`ps_comment` varchar(199) CHARACTER SET utf8 COLLATE utf8_general_ci NOT
NULL,
UNIQUE KEY pk (`ps_partkey`,`ps_suppkey`) UNENFORCED RELY,
SHARD KEY(`ps_partkey`),
KEY (`ps_partkey`,`ps_suppkey`) USING CLUSTERED COLUMNSTORE

);

rapids >CREATE reference TABLE region (
r_regionkeyint(11) NOT NULL,
r_namevarchar(25) NOT NULL,
r_commentvarchar(152) NOT NULL,
PRIMARY KEY (r_regionkey)

);

rapids >CREATE TABLE `supplier` (
`s_suppkey` int(11) NOT NULL,
`s_name` char(25) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,

`s_address` varchar(40) CHARACTER SET utf8 COLLATE utf8_general_ci NOT
NULL,
`s_nationkey` int(11) NOT NULL,
`s_phone` char(15) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
`s_acctbal` decimal(15,2) NOT NULL,
`s_comment` varchar(101) CHARACTER SET utf8 COLLATE utf8_general_ci NOT
NULL,
UNIQUE KEY pk (`s_suppkey`) UNENFORCED RELY,

Database Test Guide

Database Test Guide

SHARD KEY (`s_suppkey`) USING CLUSTERED COLUMNSTORE
);

6.3 Data import

After table creation, it comes to data import. We can use connector
created previously for data import:

rapids > use connector BORAYDATA;

Please note that file path can’t be incorrect and please wait patiently
during import. In case of cleared environment network or poor disk
reading and writing, it may take a long time for import, rather than crash.

rapids > load data infile '/data/tpch100g/region.csv' into table region fields terminated by '|'

lines terminated by '|\n';

6.4 Data query

All query statements (22 SQL in total, please refer to query.txt file)

involved during TPCH test and SQL statements are detailed below:
Q1: Query of price statistics report
Q1 statement is a pricing summary report for querying lineitem. It queries the time

period from the lineitem of the single table, and gives statistics of paid goods and

delivered goods and other goods, including billing of business volume, delivery,

discount, tax and average price etc.

Q1 statement is characterized by single table query operation with coexistence of

grouping, sorting and aggregation. The query may cause reading of 95%~97% rows

of data on the table.

Q1 query statement is as follows:

select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as

sum_base_price, sum(l_extendedprice*(1-l_discount)) as sum_disc_price,

sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge, avg(l_quantity) as avg_qty,

avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc, count(*) as count_order from

lineitem where l_shipdate<= '1998-12-01 00:00:00' and l_shipdate>= '1998-09-01 00:00:00' group

by l_returnflag, l_linestatus order by l_returnflag, l_linestatus limit 1;

Q2: Query of suppliers with the minimum cost

Q2 statement can be used to query the supplier with the minimum cost. In a given

region, a given part (a part of a certain type and size) can be ordered from the supplier

who can supply it at the lowest price.

Database Test Guide

Database Test Guide

Q2 statement is characterized by multi-table query operation with coexistence of

sorting, aggregation and subquery. The query statement does not syntactically limit

the number of tuples to return. But, the TPC-H standard stipulates that only the first

100 rows (usually depending on the application program) are returned as query result.

Q2 query statement is as follows:

select s_acctbal, s_name, n_name, p_partkey, p_mfgr, s_address, s_phone, s_comment from part,

supplier, partsupp, nation, region where p_partkey = ps_partkey and s_suppkey = ps_suppkey and

p_size = 15 and p_type like '%brass' and s_nationkey = n_nationkey and n_regionkey =

r_regionkey and r_name = 'europe' and ps_supplycost = (select min(ps_supplycost) from

partsupp, supplier, nation, region where p_partkey = ps_partkey and s_suppkey = ps_suppkey and

s_nationkey = n_nationkey and n_regionkey = r_regionkey and r_name = 'europe') order by

s_acctbal desc, n_name, s_name, p_partkey limit 1;

Q3: Query of shipping priority

Q3 statement can be used to query the order not delivered and with revenue ranking

the top 10. It specifies the shipping priority (orders are sorted in descending order of

the revenue) of the order with the largest revenue among orders not shipped before the

specified date and the potential revenues (potential revenupes are the sum of

l_extendedprice * (1-l_discount)).

Q3 statement is characterized by three-table query with coexistence of grouping,

sorting and aggregation. The query statement does not syntactically limit the number

of tuples to return. But, the TPC-H standard stipulates that only the first 10 rows

(usually depending on the application program) are returned as query result.

Q3 query statement is as follows:

select l_orderkey, sum(l_extendedprice*(1-l_discount)) as revenue, o_orderdate, o_shippriority

from customer, orders, lineitem where c_mktsegment = 'building' and c_custkey = o_custkey and

l_orderkey = o_orderkey and o_orderdate< '1995-03-15' and l_shipdate> '1995-03-15' group by

l_orderkey, o_orderdate, o_shippriority order by revenue desc, o_orderdate limit 1;

Q4: Query of order priority

Q4 statement can be used to query the statistics value of order priority. It calculates

the quantity of orders in the specified three months and at least includes one row in

each order which will be received by the customer after the submission date.

Database Test Guide

Database Test Guide

Q4 statement is characterized by single table query operation with coexistence of

grouping, sorting, aggregation and subquery. Subquery is relevant subquery.

Q4 query statement is as follows:

select o_orderpriority, count(*) as order_count from orders where o_orderdate>= '1993-07-01' and

o_orderdate< '1993-10-01' and exists (select * from lineitem where l_orderkey = o_orderkey and

l_commitdate<l_receiptdate) group by o_orderpriority order by o_orderpriority limit 1;

Q5: Query of revenue created by a supplier in an area for the Company

Q5 statement can be used to query the statistical revenue (calculated according to sum

(l_extendedprice * (1 -l_discount))) obtained from part supplier in a certain area. It

can be used to determine whether a local distribution center needs to be established in

the given area.

Q5 statement is characterized by multi-table join query operation with coexistence of

grouping, sorting, aggregation and subquery.

Q5 query statement is as follows:

select n_name, sum(l_extendedprice * (1 - l_discount)) as revenue from customer, orders,

lineitem, supplier, nation, region where c_custkey = o_custkey and l_orderkey = o_orderkey and

l_suppkey = s_suppkey and c_nationkey = s_nationkey and s_nationkey = n_nationkey and

n_regionkey = r_regionkey and r_name = 'asia' and o_orderdate>= '1994-01-01' and o_orderdate<

'1995-01-01' group by n_name order by revenue desc limit 1;

Q6: Query of forecast revenue change

Q6 statement can be used to query incremental revenue brought about by changing

the discount in a given year. It’s a typical “what-if” judgement and can be used to find

way to increase the revenue. Query of forecast revenue change considers all delivered

orders at a discount between “DISCOUNT-0.01” and “DISCOUNT＋0.01” in a given

year, and can be used to find the amount of increase in total revenue after elimination

of discount of orders with l_quantity less than quantity.

Q6 statement is characterized by single table query operation with aggregation. Query

statement includes BETWEEN-AND operator and some database can be used to

optimize BETWEEN-AND.

Q6 query statement is as follows:

Database Test Guide

Database Test Guide

select sum(l_extendedprice*l_discount) as revenue from lineitem where l_shipdate>=

'1994-01-01' and l_shipdate< '1995-01-01' and l_discount between 0.06 - 0.01 and 0.06 + 0.01 and

l_quantity< 24 limit 1;

Q7: Query of shipping profits

Q7 statement can be used to query the sales profits obtained between nation of the

supplier and nation for selling goods. It can be used to determine the volume of

shipped goods between two nations, so as to help negotiation about shipping contract.

Q7 statement is characterized by multi-table query with coexistence of grouping,

sorting, aggregation and subquery. Parent query of subquery is a relatively simple

subquery without other query objects.

Q7 query statement is as follows:

select supp_nation, cust_nation, l_year, sum(volume) as revenue from (select n1.n_name as

supp_nation, n2.n_name as cust_nation, extract(year from l_shipdate) as l_year, l_extendedprice *

(1 - l_discount) as volume from supplier, lineitem, orders, customer, nation n1, nation n2 where

s_suppkey =l_suppkey and o_orderkey = l_orderkey and c_custkey = o_custkey and s_nationkey

= n1.n_nationkey and c_nationkey = n2.n_nationkey and ((n1.n_name = 'france' and n2.n_name =

'germany') or (n1.n_name = 'germany' and n2.n_name = 'france')) and l_shipdate>= '1995-01-01'

and l_shipdate<= '1996-12-31') as shipping group by supp_nation, cust_nation, l_year order by

supp_nation, cust_nation, l_year limit 1;

Q8: Query of market share held by the nation

Q8 statement can be used to query the change of market share of a given part in a

certain region of a certain nation in the past two years.

Q8 statement is characterized by query with coexistence of grouping, sorting,

aggregation and subquery. Parent query of subquery is a relatively simple subquery

without other query objects. But, subquery is a multi-table join query.

Q8 query statement is as follows:

select o_year, sum(case when nation = 'brazil' then volume else 0 end) / sum(volume)

as mkt_share from (select extract(year from o_orderdate) as o_year, l_extendedprice

* (1-l_discount) as volume, n2.n_name as nation from part, supplier, lineitem, orders,

customer, nation n1, nation n2, region where p_partkey = l_partkey and s_suppkey =

l_suppkey and l_orderkey = o_orderkey and o_custkey = c_custkey and c_nationkey

Database Test Guide

Database Test Guide

= n1.n_nationkey and n1.n_regionkey = r_regionkey and r_name = 'america' and

s_nationkey = n2.n_nationkey and o_orderdate>= '1995-01-01' and o_orderdate<=

'1996-12-31' and p_type = 'economy anodized steel') as all_nations group by o_year

order by o_year;

Q9: Query of profit estimation by product type

Q9 statement can be used to query the annual total profits of all parts ordered in each

nation in each year.

Q9 statement is characterized by query with coexistence of grouping, sorting,

aggregation and subquery. Parent query of subquery is a relatively simple subquery

without other query objects. But, subquery is a multi-table join query. LINK operator

is used during subquery. Some query optimizer can’t be used to optimize the LINK

operator.

Q9 query statement is as follows:

select nation, o_year, sum(amount) as sum_profit from (select n_name as nation, extract(year

from o_orderdate) as o_year, l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity as

amount from part, supplier, lineitem, partsupp, orders, nation where s_suppkey = l_suppkey and

ps_suppkey = l_suppkey and ps_partkey = l_partkey and p_partkey = l_partkey and o_orderkey =

l_orderkeyand s_nationkey = n_nationkey and p_name like '%green%') as profit group by nation,

o_year order by nation, o_year desc limit 1;

Q10: Query of shipping problems

Q10 statement can be used to query the customers with shipping problems in three

months from a cetain time and accrued losses in each country.

Q10 statement is characterized by multi-table join query with coexistence of

grouping, sorting and aggregation. The query statement does not syntactically limit

the number of tuples to return. But, the TPC-H standard stipulates that only the first

10 rows (usually depending on the application program) are returned as query result.

Q10 query statement is as follows:

select c_custkey, c_name, sum(l_extendedprice * (1 - l_discount)) as revenue, c_acctbal, n_name,

c_address, c_phone, c_comment from customer, orders, lineitem, nation where c_custkey =

o_custkey and l_orderkey = o_orderkey and o_orderdate>= '1993-10-01' and o_orderdate<

Database Test Guide

Database Test Guide

'1994-01-01' and l_returnflag = 'r' and c_nationkey = n_nationkey group by c_custkey, c_name,

c_acctbal, c_phone, n_name, c_address, c_comment order by revenue desc limit 1;

Q11: Query of inventory value

Q11 statement can be used to query the value of parts in stock supplied by a ceratin

nation.

Q11 statement is characterized by multi-table join query with coexistence of

grouping, sorting, aggregation and subquery. Subquery is included in the HAVING

condition of grouping.

Q11 query statement is as follows:

select ps_partkey, sum(ps_supplycost * ps_availqty) as value from partsupp, supplier, nation

where ps_suppkey = s_suppkey and s_nationkey = n_nationkey and n_name = 'germany' group by

ps_partkey having sum(ps_supplycost * ps_availqty) > (select sum(ps_supplycost * ps_availqty)

* 0.0000010000 from partsupp, supplier, nation where ps_suppkey = s_suppkey and s_nationkey

= n_nationkey and n_name = 'germany') order by value desc limit 1;

Q12: Query of shipping mode and order priority

Q12 statement can be used to query the obtained shipping mode and order priority. It

can be used to help decide whether selection of cheap shipping mode can cause

customers to receive the goods after the contract date, thus leaving negative influence

on emergency priority order.

Q12 statement is characterized by two table join query with coexistence of grouping,

sorting and aggregation.

Q12 query statement is as follows:

select l_shipmode, sum(case when o_orderpriority ='1-urgent' or o_orderpriority ='2-high' then 1

else 0 end) as high_line_count, sum(case when o_orderpriority<> '1-urgent' and o_orderpriority<>

'2-high' then 1 else 0 end) as low_line_count from orders, lineitem where o_orderkey = l_orderkey

and l_shipmode in ('mail', 'ship') and l_commitdate<l_receiptdate and l_shipdate<l_commitdate

and l_receiptdate>= '1994-01-01 00:00:00' and l_receiptdate< '1995-01-01 00:00:00' group by

l_shipmode order by l_shipmode;

Q13: Query of order quantity from customers

Q13 statement can be used to query the quantity of orders from the customers,

including customers without order records in the past and at present.

Database Test Guide

Database Test Guide

Q13 statement is characterized by query with coexistence of grouping, sorting,

aggregation, subquery and left outer join.

Q13 query statement is as follows:

select c_count, count(*) as custdist from (select c_custkey, count(o_orderkey) as c_count from

customer left outer join orders on c_custkey = o_custkey and o_comment not like

'%special%requests%' group by c_custkey) as c_orders group by c_count order by custdist desc,

c_count desc limit 1;

Q14: Query of promotion effect

Q14 statement can be used to query the percentage among monthly revenue from

parts promotion, so as to monitor the market reaction brought by promotion.

Q14 statement is characterized by query with coexistence of grouping, sorting,

aggregation, subquery and left outer join..

Q14 query statement is as follows:

select 100.00 * sum(case when p_type like 'promo%' then l_extendedprice*(1-l_discount) else 0

end) / sum(l_extendedprice * (1 - l_discount)) as promo_revenue from lineitem, part where

l_partkey = p_partkey and l_shipdate>= '1995-09-01' and l_shipdate< '1995-10-01';

Q15: Query of top suppliers

Q15 statement can be used to query the information of supplier (ranked first) with the

largest contribution to the total revenues in a time, so as to decide which first-class

suppliers can be granted with rewards, more orders, specific certification or

encouragrement.

Q15 statement is characterized by join operation of common table and view with

coexistence of sub-sorting, aggregation and aggregation subquery.

Q15 query statement is as follows:

with revenue0 (supplier_no, total_revenue) as (select l_suppkey, sum(l_extendedprice * (1 -

l_discount)) from lineitem where l_shipdate>= '1996-01-01'and l_shipdate< '1996-01-01' +

interval '3' month group by l_suppkey) select s_suppkey, s_name, s_address, s_phone,

total_revenue from supplier, revenue0 where s_suppkey = supplier_no and total_revenue = (select

max(total_revenue) from revenue0) order by s_suppkey;

Q16: Query of part/supplier relationship

Q16 statement can be used to query the quantity of suppliers that can supply parts at

Database Test Guide

Database Test Guide

the specified contribution conditions, so as to determine whether there are sufficient

suppliers when there is large order quantity and urgent task.

Q16 statement is characterized by two-table join operation with coexistence of

grouping, sorting, aggregation, weight adjusting, and NOT IN subquery.

Q16 query statement is as follows:

select p_brand, p_type, p_size, count(distinct ps_suppkey) as supplier_cnt from partsupp, part

where p_partkey = ps_partkey and p_brand<> 'brand#45' and p_type not like 'medium polished%'

and p_size in (49,14,23,45,19,3,36,9) and ps_suppkey not in (select s_suppkey from supplier

where s_comment like '%customer%complaints%') group by p_brand, p_type, p_size order by

supplier_cnt desc, p_brand, p_type, p_size limit 1;

Q17: Query of income from small orders

Q17 statement can be used to query small batch orders less than 20% of average

supply amount. For parts with specific trademark and package type, it can be used to

determine the average number of items (past and pending) of such order parts among

all orders in a seven-year database, and determine the average annual loss if orders of

parts less than 20% of the average will not be accepted. So, this query can be used to

get the loss of average annual revenue if without small orders (as management fees

can be reduced for shipping of large volume of goods).

Q17 statement is characterized by two-table join operation with coexistence of

aggregation and aggregation subquery.

Q17 query statement is as follows:

select sum(l_extendedprice) / 7.0 as avg_yearly from lineitem, part where p_partkey = l_partkey

and p_brand = 'brand#23' and p_container = 'med box' and l_quantity = (select 0.2 *

avg(l_quantity) from lineitem where l_partkey = p_partkey);

Q18: Query of customers with large orders

Q18 statement can be used to query the information of suppliers with supply quantity

above the specified quantity. It can be used to determine whether there are sufficient

suppliers when there is large order quantity and urgent task.

Q18 statement is characterized by three-table join operation with coexistence of

grouping, sorting, aggregation and IN subquery. The query statement does not

syntactically limit the number of tuples to return. But, the TPC-H standard stipulates

Database Test Guide

Database Test Guide

that only the first 100 rows (usually depending on the application program) are

returned as query result.

Q18 query statement is as follows:

select c_name, c_custkey,o_orderkey, o_orderdate, o_totalprice, sum(l_quantity) from customer,

orders, lineitem where o_orderkey in (selectl_orderkey from lineitem group by l_orderkey having

sum(l_quantity) > 300) and c_custkey = o_custkey and o_orderkey = l_orderkey group by

c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice order by o_totalprice desc, o_orderdate

limit 1;

Q19: Query of discount revenue

Q19 statement can be used to query the total discount revenues from all orders of

three types of parts transported by air or by hand. Parts are selected by considering its

brand, package and size. This query is an example of formatting code generated by

data mining tools.

Q19 statement is characterized by three-table join operation with coexistence of

grouping, sorting, aggregation and IN subquery.

Q19 query statement is as follows:

select sum(l_extendedprice * (1 - l_discount)) as revenue from lineitem, part where (p_partkey =

l_partkey and p_brand = 'brand#12' and p_container in ('sm case', 'm box', 'sm pack', 'sm pkg')

and l_quantity>= 1 and l_quantity<= 1 + 10 and p_size between 1 and 5 and l_shipmode in ('air',

'air reg') and l_shipinstruct = 'deliver in person') or (p_partkey = l_partkey and p_brand =

'brand#23' and p_container in ('med bag', 'med box', 'med pkg', 'med pack') and l_quantity>= 10

and l_quantity<= 10 + 10 and p_size between 1 and 10 and l_shipmode in ('air', 'air reg') and

l_shipinstruct = 'deliver in person') or (p_partkey = l_partkey and p_brand = 'brand#34' and

p_container in ('lg case', 'lg box', 'lg pack', 'lg pkg') and l_quantity>= 20 and l_quantity<= 20 + 10

and p_size between 1 and 15 and l_shipmode in ('air', 'air reg') and l_shipinstruct = 'deliver in

person');

Q20: Query of supplier competitiveness

Q20 statement can be used to query the supplier from the given nation that can

provide a more competitive price for a part in a given year. The so-called supplier

with more competitiveness refers to suppliers with surplus parts. That quantity of

parts is more than 50% of a part received by a given nation from the supplier in a year

means surplus.

Database Test Guide

Database Test Guide

Q20 statement is characterized by two-table join operation with coexistence of

sorting, aggregation, IN subquery and common subquery.

Q20 query statement is as follows:

select s_name, s_address from supplier, nation where s_suppkey in (select ps_suppkey from

partsupp where ps_partkey in (select p_partkey from part where p_name like 'forest%') and

ps_availqty> (select 0.5 * sum(l_quantity) from lineitem where l_partkey = ps_partkey and

l_suppkey = ps_suppkey and l_shipdate>= '1994-01-01' and l_shipdate< '1995-01-01')) and

s_nationkey = n_nationkey and n_name = 'canada' order by s_name limit 1;

Q21: Query of suppliers failed to deliver on time

Q21 statement can be used to query the suppliers failing to deliver on time.

Q21 statement is characterized by four-table join operation with coexistence of

grouping, sorting, aggregation, EXISTS subquery, and NOT EXISTS subquery. The

query statement does not syntactically limit the number of tuples to return.But, the

TPC-H standard stipulates that only the first 100 rows (usually depending on the

application program) are returned as query result.

Q21 query statement is as follows:

select s_name, count(*) as numwait from supplier, lineitem l1, orders, nation where s_suppkey =

l1.l_suppkey and o_orderkey = l1.l_orderkey and o_orderstatus = 'f' and l1.l_receiptdate >

l1.l_commitdate and exists (select * from lineitem l2 where l2.l_orderkey = l1.l_orderkey and

l2.l_suppkey <> l1.l_suppkey) and not exists (select * from lineitem l3 where l3.l_orderkey =

l1.l_orderkey and l3.l_suppkey <> l1.l_suppkey and l3.l_receiptdate > l3.l_commitdate) and

s_nationkey = n_nationkey and n_name = 'saudiarabia' group by s_name order by numwait desc,

s_name limit 1;

Q22: Query of global sales opportunities

Q22 statement can be used to query geographical distribution of possible purchase by

customers. It can be used to calculate the number of consumers in a given nation,

having a more positive attitude than the average, and without placing seven-year

orders. It can reflect the attitude of common consumers, i.e. purchase intention.

Q22 statement is characterized by four-table join operation with coexistence of

grouping, sorting, aggregation, EXISTS subquery and NOT EXISTS subquery.

Q22 query statement is as follows:

Database Test Guide

Database Test Guide

select cntrycode, count(*) as numcust, sum(c_acctbal) as totacctbal from (select

substring(c_phone from 1 for 2) as cntrycode, c_acctbal from customer where substring(c_phone

from 1 for 2) in ('13','31','23','29','30','18','17') and c_acctbal> (select avg(c_acctbal) from

customer where c_acctbal> 0.00 and substring (c_phone from 1 for 2) in

('13','31','23','29','30','18','17')) and not exists (select * from orders where o_custkey = c_custkey)

) as custsale group by cntrycode order by cntrycode limit 1;

6.5 Query script

All 22 SQL statements are written into a txt file. Let’s take query.txt
as an example, it’s necessary to create an empty result.txt file and place
them in the directory of /data/rdp/current jointly, and then prepare a script
file:

[root@node1current]# vi test.sh

#! /bin/bash

export RDP_USERNAME=rapids

export RDP_PASSWORD=rapids

time echo "run /opt/rdp/current/query.txt;" | ./rapids-shell.sh 2>&1 | tee result.txt

The script can be executed after the file is saved and granted with
privileges, and results will be recorded in the result.txt file:

[root@node1current]#chmod 777 test.sh

[root@node1current]# ./test.sh

7、 POC Test Optimization

Apart from pressure test based on TPCH, the customer may require
onsite test or simulation test, and provide table structure and business
logic. In this condition, it should be tested flexibly according to machine
configuration and data volume. The following describes the database
table structure optimization plan and problem solving method that may be
used during test.
7.1 Data partition

As distributed database, database can be divided into several
partitions during database creation by RapidsDB. The number of
partitions can be a value automatically calculated according to the current
scale of the cluster. The user can use the command of show partitions to
see the current partition conditions. The user can also add partition=n
after the statement during database creation to specify the number of
partitions of the database. When the cluster scale is large and network
link is good, the number of partitions should be larger as recommended.

Database Test Guide

Database Test Guide

rapids > create database test partitions = 100;

7.2 Shard key

Each table should have a shard key or partition index, i.e. shard key,

which is similar with table index of common table and may include rows

in any quantity. When create table is operated by the user to create a

table, a shard key can be specified for the table. If no shard key is

specified, default shard key should be used.

7.2.1 Type of shard key

The following shows the type of shard key:

● Default shard key

No specific shard key, or specify an empty shard key:
rapids > create table t1(a INT,b INT);

rapids > create table t1(a INT,b INT, shard key ());

In most conditions, keyless partition can cause even distribution of rows

in the partitions.

● Primary key as shard key
If a table with primary key and without explicit shard key is created

by the user, primary key will be used as shard key by default.
rapids > CREATE TABLE clicks (

click_id BIGINT AUTO_INCREMENT PRIMARY KEY,

user_id INT,

page_id INT,

ts TIMESTAMP);

● Non-unique shard key
rapids > CREATE TABLE clicks (

click_id BIGINT AUTO_INCREMENT,

user_id INT,

page_id INT,

ts TIMESTAMP,

Database Test Guide

Database Test Guide

SHARD KEY (user_id),

PRIMARY KEY (click_id, user_id));

Please note, even if click_id is unique, user_id should also be included in the

primary key.

● Common shard key:
rapids > CREATE TABLE clicks2 (

click_id BIGINT AUTO_INCREMENT,

user_id INT,

page_id INT,

ts TIMESTAMP,

SHARD KEY (user_id) ;

7.2.2 Functions of shard key

Shard key can be used to determine which column can be used as
benchmark and basis for importing data and stored in our partition. The
column selected as shard key will directly affect the distribution of data.
Rows with same shard key will be stored in the same partition. So, it’s of
great importance to efficiently select which column or columns can be
used as shard key.

For example: shard key in the following table only include the

column first, and all persons with same name will be stored in the same

partition (four partitions in total):

Shard key should be specified during table creation. Once created,

shard key of the table can’t be altered at will. During data partition, two

competitive factors should be considered:

● Data are distributed averagely across partitions;

Database Test Guide

Database Test Guide

● Data on the column screened or connected frequently are partitioned.

Firstly, data distributed evenly can facilitate planning of the volume,

as the resources will be used by the system uniformly. If data skew or is

distributed unevenly, its query performance may be affected to a certain

degree, as there may be some partitions with low speed. Query speed of

multiple partitions isn’t quicker than lowest operation speed of the

partition.

Then, if the optimizer can accurately know which partition is used,

query performance can be imporved significantly, and the resources used

will also be reduced. If query filter matches the keyword of shard key,

RapidsDB only needs to contain one partition, so as to greatly reduce the

usage of customer resources at a high concurrent workload. Similarly,

multiple tables with same shard key will be connected locally on the leaf

partition, rather than re-distribution of data in the cluster, thus causing

quicker connection with high concurrent performance. Tables with

different shard keys can be connected or distributed connection may be

much slower and consume more resources.

For example: the following query is considered as a “single

partition”, as screen clause (where first = ‘john') includes the column of

shard key, and aggregator only needs to have dialogue with a partition to

obtain data:

Database Test Guide

Database Test Guide

In case of data deviation, these two problems generally have

conflicts. For example, first may be an awful shard key in the table, as

some names are more common than other names. In this condition, it’s

more important to disturbute data evenly, so as to not deplete the capacity

by the cluster. User may be a better choice, as it will be distributed more

evenly and may be the filter targeted on table query. If the user hopes that

a table can get a truly uniform partition, one can give partition on an auto

incrementing column.

7.2.3 Selection of shard key

Faced with selection of shard key, you may refer to the followings:

Q: Does the table have a primary key?

A: It’s necessary to ensure that there is a shard key, which is a sub-cluster

of primary key.

Q: Do you often add a specific set of columns during query? For

example: where users.id = action.user_id and users.country =

action.country

A: Please try to make column of shard key a subset of columns for

connection.

Q: Do you often screen a specific column during query? For example:

where user_id = 17 and date = '2007-06-14'

A: Please try to make column of Shard Key a subset of screening column.

Q: Do users need highly concurrent queries?

A: Select a Shard Key that allows such queries to be a single partition.

Q: Does user data deviate from the currently selected Shard Key?

A: Please try to add extra columns to the Shard Key to ensure even

Database Test Guide

Database Test Guide

distribution.

Q: Do users need to update or alter any fields of Shard Key?

A: Remove these fields from Shard Key.

Q: If you have a small table with little change, do you need to be on each

node of the cluster to ensure local connection?

A: Use reference table rather than partition table.

7.3 Row table

Row storage is the default table storage format. Generally, the user

will specify a shard key and one or more indexes for the row table. The

shard key and index are optional and not mandatory. The user can also

add a primary key that is mandatory to be unique.

7.3.1 Create row table

The following is the example of statements for creating a row table:
rapids > CREATE TABLE products (

ProductId INT,

Price INT,

dt DATETIME,

KEY (Price),

SHARD KEY (ProductId));

All data in the row table will be written into the memory, so the

memory capacity of the server is very important, and we need to reserve

part of the memory space for cache storage and processing (about 20% -

30%). So when the machine memory is 256GB, we can only import

180GB data at most, so as to avoid performance degradation and full

memory

The advantage of row table is that it can establish multiple indexes,

and has outstanding performance in addition, deletion, alteration and

Database Test Guide

Database Test Guide

query. It is more suitable for multi-column random search, more frequent

addition and deletion of tables, smaller data volume and business

scenarios with complex logic.

7.3.2 Row table index

Row table index has two storage types: lock free skip column table

index and lock free Hash Table. In these two cases, we use lock free data

structure to optimize concurrent update performance of the table.

● By default, the index is stored as a skip table, which has similar

functions and performance characteristics to B-trees in other

databases. Skip table is a data structure optimized for ordered data,

which stores rows in smaller and smaller ordered table sets. Queries

can quickly find data by binary search using table at different sizes,

and can quickly scan data scope by traversing the largest table. For

multi-column index, the query filter must match the prefix of the

index column list, so as to use the index.
rapids > CREATE TABLE products (

ProductId INT,

Price INT,

KEY (Price) using BTREE ,

SHARD KEY (ProductId));

● Hash Table is a data structure optimized for fast query. It stores rows

in a sparse bucket array. These buckets are indexed by hash functions

on related columns. A query can quickly find the exact matching data

by only checking the buckets identified by hash functions, but it

cannot easily scan a subset of the table. For multi-column indexes, the

query filter must match all index columns before using the indexes,

which causes inflexibility. So we do not encourage the use of hash

Database Test Guide

Database Test Guide

indexes. They are only be used when there are clear demands and

measurable benefits from specific data sets and workloads of the user.
rapids > CREATE TABLE products2 (

ProductId INT,

Price INT,

KEY (Price) using HASH,

SHARD KEY (ProductId));

Another factor to consider when selecting an index is the cost

incurred from addition of another index. For each additional index, extra

memory will be used for additional data structures (about 40 bytes per

row on average) and data insertion is slowed down slightly.

In each row table, there is at most one primary key or multiple

primary keys. The scanning of primary key is usually faster than that of

secondary key. For example, if data is inserted in the order of primary

key, then for primary key, rows are inserted in memory order and the

cache location of rows is better than that of secondary key.

7.3.3 Selection of table index

The following is a common problem during creation of row table

index:

Q: For table CREATE TABLE t(a INT, b INT, KEY (a, b)), will the query

of SELECT SUM(a) FROM t WHERE b = 3 benefit from the index?

A: No, as the unquie column b in the filter list isn’t the prefix of button

(a, b), query can’t benefit from the index. In case of SELECT SUM(a)

FROM t WHERE a = 3, it’s ok.

7.4 Column table

The column table has only one index, which is used by the column
storage as a keyword to divide all rows into logic segments after sorting.
These logic segments contain data of many rows. Data in the data

Database Test Guide

Database Test Guide

segments are stored in the data segment files on the disk, which contain
the same fields of many rows. This realizes two important functions: one
is to scan each column separately; in essence, it can and only can scan the
columns required by query with high locality. The other is that column
storage is very suitable for compressing data. For example, duplicate and
similar data can be easily compressed together.
In addition, RapidsDB stores the metadata of each row segment in
memory, including the minimum and maximum values of each column
contained in the segment. The metadata is used to determine whether a
segment may match the filter during query, which is called segment
elimination.

7.4.1 Create column table

For example, we create the following column table:
rapids > CREATE TABLE products (

ProductId INT,

Color VARCHAR(10),

Price INT,

Quantity INT,

KEY (`Price`) USING CLUSTERED COLUMNSTORE);

15 rows of data are temporarily used for demonstration:

Row segment group 1 for sorting:

Database Test Guide

Database Test Guide

Row segment group 2:

Row segment group 3:

“×N means the value is repeated for N times”

In this example, we can see that there are three segments containing
different ranges of Price column (4-15, 20-25 and 30-50). Each segment
has the same number of rows and data organized by columns. For each
column, the minimum and maximum values in the segment are stored as
metadata.

The most important consideration of column table key is to add
deletion quantity of the segment. Metadata of minimum/maximum values
can be used to determine whether a segment matches the filter during
query; if not, it’s necessary to completely skip this segment and not check
data.

A good key of column table is used to segment the data through
filter, so as to add the optimization possibility. Segment deletion is very
effective for query by screening key column of column table index,
because row segments in each row segment group don’t have overlapping
segments. For example, in the above table, query statement SELECT
AVG(Price), AVG(Qty) FROM Products WHERE Price BETWEEN 1
AND 10; will eliminate all segments except for the price in the row
segment group of 4-15.

Database Test Guide

Database Test Guide

7.4.2 Selection of table index

The following are several common problems during creation of

column table index:

Q: Is data always filtered by a column (for example, insertion timestamp

or event type)

A: Make sure that all public columns for query are in the key columns of

column table to improve segment elimination.

Q: Is data usually inserted in column order (for example, insertion

timestamp)

A: It is best to put the column first in the key column of column table to

minimize the workload required for background segment merging.

Q: Does one column of the user’s key have a higher base than the other?

A: It is best to put the column with the minimum base first to increase the

possibility of segment deletion affecting the later columns.

Q: Can the column storage key be different from the shard key?

A: Of course, they don’t have any relationship. Usually, it’s

recommended to select shard key matching with other row storage table

(such as event_id) to improve connection performance, and select

uncorrelated column storage key matching with common filter (such as

event_timestamp or event_type) in the table.

7.5 Unique key

The user may specify the cancelation of enforcement option on the

unique constraint to disable enforcement of the constraint. This means

that RapidsDB doesn’t prevent users from inserting duplicate rows and

doesn’t ensure that the constraint is true. The unenforced unique

Database Test Guide

Database Test Guide

constraint is informative: query planners can use the unenforced unique

constraint as a cue for selecting a better query plan.

The unenforced unique constraint is useful for column table, because

column table does not support general unique constraints. In the column

table, the unenforced unique constraint is logical indexes only, which has

no physical storage.

In row table, the unenforced unique constraint is physically stored as

a regular non-unique index.

“Dependency” and “non-dependency” options specify how the query

planner uses the unenforced unique constraint:

● “Non-dependency” NORELY option is a default option, which

specifies that query semantics should not depend on the unenforced

unique constraint - whether the unenforced unique constraint is true or

not, the query will return the correct results. Rapidsdb may use an

unenforced unique constraint to inform statistical estimates.

● “Dependency” rely option specifies that RapidsDB can choose a

query plan with the assumption that the unenforced unique constraint

is true - only when the constraint is true, the query can ensure that the

correct results are returned. If there are duplicate rows, incorrect

results may be returned during query. Only when the user knows that

the constraint is valid, for example, one process of the user

application enforces the integrity of the constraint, this option can be

used, just as that a dependent unenforced unique constraint can be

used by RapidsDB to notify the statistical estimates and eliminate

redundant connection.

Statement example

Database Test Guide

Database Test Guide

To specify the unique constraint as enforcement cancellation, please

add the option of unenforced into the index declaration, for example:
UNIQUE KEY (col1, col2) UNENFORCED

Syntax of unenforced clause is:
UNENFORCED [RELY | NORELY]

If RELY or NORELY isn’t specified, it should be NORELY by
default.

Complete statements during table creation should be:
rapids > CREATE TABLE t (id INT,

KEY USING CLUSTERED COLUMNSTORE (id),

UNIQUE KEY (id) UNENFORCED RELY);

Note: column storage index table doesn’t support unenforced unique
constraint. It doesn’t support addition, deletion or alteration of unenforced
unique constraint on the column storage table.
7.6 Data skew

One important characteristic of distributed database is that the
distribution of data is more or less evenly. In very few cases, data may be
unbalanced. In this section, we mainly discuss how skew occurs, how to
be detected and how to solve it

7.6.1 Understand data skew

The “asymmetry” herein refers to the imbalance of table data among
partitions of the cluster. Although it is unlikely, a small amount of skew is
inevitable and harmless. By default, RapidsDB can distribute data based
on the hash value of the primary key. As the hash value is unique and
evenly distributed, this will keep the minimum deviation.

Users can split tables by a set of columns rather than primary keys.
For example, a URL table from a WEB domain can be defined as
follows:
rapids > CREATE TABLE urls (id BIGINT,

domain_id BIGINT,

path VARCHAR(8192),

first_seen INT UNSIGNED NOT NULL,

crawl count INT UNSIGNED NOT NULL, ...

SHARD KEY (domain_id));

As shown, domain_id is partitioned by database. Query for this table

Database Test Guide

Database Test Guide

will be compiled and run well. However, it is likely that the number of
URLs for some domain names will be many times more than this. For
example, the partition containing the “youtube.com” link will almost
certainly have more rows than the average level, which will break the
balance of the cluster. The bad luck partition containing “youtube.com”
will not only store more data, but also assume more work during the
selection, update, and deletion of query tasks as required. To achieve the
best performance, users should choose a shard key that can minimize data
asymmetry.

After a large amount of load data, recovery from restart, or deletion
of large amounts of data, a partition may temporarily display more
memory usage and memory skew than other partitions, because memory
allocation and garbage collection may not take effect immediately
between partitions. This is normal. As the system reaches a new stable
state, it will self-correct as time goes on.

7.6.2 View data skew

The user may measure and test data skew with following methods:
● Method 1: check memory allocation

Variables, i.e. maximum_table_memory and Alloc_table_memory

(memory used by the table) on each node are compared manually:
rapids > SHOW VARIABLES LIKE "maximum_%";

Variable_name Value
------------- ------

maximum_memory 762244
maximum_table_memory 686019

2 row(s) returned (0.00 sec)

rapids >SHOW STATUS EXTENDED LIKE "Alloc_table_memory";

Variable_name Value
------------ -----
Alloc_table_memory 46.807 MB

1 row(s) returned (0.00 sec)

If memory consumption on a particular node is significantly higher,
skew will occur. If memory consumption is fairly even between leaves,
skew will not exist.
● Method 2: find rows and memory usage in each partition

Database Test Guide

Database Test Guide

The built-in database contains metadata about tables, columns,
indexes and partitions. In particular, each table partition contains a row,
which can be used to check whether the number of rows in a given
partition is more than the average:
rapids >SELECT

DATABASE_NAME,

TABLE_NAME,

ORDINAL AS PARTITION_ID,

ROWS,

MEMORY_USE

FROM INFORMATION_SCHEMA.TABLE_STATISTICS

WHERE TABLE_NAME = 'ta';

DATABASE_NAME TABLE_NAME PARTITION_ID ROWS MEMORY_USE
------------- ---------- ------------ ---- ----------
ccb ta 0 2084703 0
ccb ta 1 2085621 0
ccb ta 2 2085460 0
ccb ta 3 2083063 0
ccb ta 4 2084806 0
ccb ta 5 2082339 0
ccb ta 6 2083658 0

RapidsDB distributes data according to the shard key specified in the
table structure. If the shard key is not specified explicitly, the primary key
will act as the default shard key. If the shard key splits on the low base
sequence, the data will be accumulated on some nodes. To solve this
problem, users should first export the data, modify the mode, and then
reload the data. After data backup, one can delete the table and create a
table of shard keys with high base. When the data is reloaded, RapidsDB
will automatically partition the data according to the new shard key.
7.7 Leaf and aggregator

Leaf node is the node for storing subset of cluster data. Aggregator is
a node for querying the route to middle leaves, aggregating the middle
results, and sending the results back to the client. There are two kinds of
aggregators: main aggregator and sub-aggregator. A cluster contains one
main aggregator and zero or more sub-aggregators (depending on the
query volume).

For minimum setting, RapidsDB cluster only has an aggregator
(main aggregator) and a leaf. The user can add the aggregator, which can
be used to read metadata from main aggregator and operate DML
command on the leaf.

Storage size and performance of the cluster are determined by the

Database Test Guide

Database Test Guide

quantity of allocated aggregators and leaf nodes. For typical allocation,
the proportion of leaf node to aggregator is 5:1, which can be improved if
higher storage requirements are needed.

When network environment is gigabit lan, the curve graph of query
time changing with the number of leaves is shown below:

If there is too little leaf, the advantages of distributed mode can’t be
reflected and query speed is low.
If there is too many leaves, query speed is also affected due to
network speed limit.
In the common environment of Gigabit lan, it’s recommended to
establish 5-7 leaves for each server.
When network environment is 10 gigabit lan, the curve graph of

query time changing with the number of leaves is shown below:

Database Test Guide

Database Test Guide

In the 25G optical fiber network environment, as the network speed

has been greatly improved, the data transmission and sharing rate

between the master node and the slave node has been greatly improved.

At this time, the increase in the number of leaves does not affect the

query rate, but increases the query rate.

But it is worth noting that the number of leaves should be set

according to the hardware configuration of the machine, which shouldn’t

be too much sometimes.

7.8 Code generation

One of main reason for excellent query performance of RapidsDB is

its code generation system. Compared with traditional database execution

model based on the interpreter, RapidsDB is embedded with an industrial

compiler to generate efficient machine code, so as to achieve low-level

optimization. This process can’t be realized by query through interpreting

only. By default, the query is interpreted firstly and then compiled

asynchronously in the background, for future use. This speeds up the

execution of long-time complex query, and provides an efficient query

plan for future use.

As mentioned above, when RapidsDB encounters a given query

shape for the first time, it will asynchronously optimize and compile the

Database Test Guide

Database Test Guide

query for future use, which can minimize the expenditure and depend on

query complexity, rather than the size of data to be processed. Code

generation process includes parameter extraction from query, and

transformation of standard query into an intermediate representation of

single storage database customized by the system. Subsequent requests

with the same shape can reuse the plan for fast and consistent completion.

Code generation applies to query with all data operation languages

(DML). In addition, RapidsDB produces code during CREATE TABLE

and ALTER TABLE. Code generated from query of data definition

language (DDL) can be used to reduce the complilation time of DML

query and table checking in the future.

Allowed settings include the following modes:

1. llvm or compile: the query is compiled into machine code.

2. mbc or interpret: the query is explantatory, rather than compiled.

3. interpret_first: the query starts from interpretation and is dynamically

switched to compilation during the first query. This mode helps

improve the performance of ad hoc query. By default, interpretation

first mode is turned on and can be used during production

deployment.

This variable can also be achieved by adding OPTION

(interpreter_mode = { interpret | compile | interpret_first}) at the end of

the query. It’s not operational on the node, because it is forwarded from

the aggregator to the leaf node.

● When interpreter_mode is set as compile:

In this mode, RapidsDB can compile query shape during the first

time it encounters the query; as shown below, query SELECT * FROM t

Database Test Guide

Database Test Guide

WHERE col = 1; it takes more time to complete the first operation; this is

the result of the compilation overhead in the first step. It should also be

noted that during the second and third queries, WHERE clause is

different, but the shapes of two queries are the same. Therefore, the

second query plan is reused by RapidsDB for the third query:
rapids > SELECT * FROM t WHERE col = 1;
Empty set (0.13 sec)
rapids > SELECT * FROM t WHERE col = 1;
Empty set (0.00 sec)

rapids > SELECT * FROM t WHERE col = 100000;
Empty set (0.00 sec)

● When interpreter_mode is set as interpret_first:

In this mode, RapidsDB can automatically interpret and compile the

query shape during the first time it encounters the query shape. The query

is operated in interpretation mode, until completion of compilation of

query shape. In the following example, the speed for firstly querying

SELECT * FROM t WHERE col = 1; is larger than the first query speed

in the previous example:
rapids > SELECT * FROM t WHERE col = 1;
Empty set (0.02 sec)

rapids > SELECT * FROM t WHERE col = 1;
Empty set (0.00 sec)

rapids > SELECT * FROM t WHERE col = 100000;
Empty set (0.00 sec)

View current mode:
rapids> show variables like '%interpreter_mode%';
+-------------------------------------+-----------------+
| Variable_name | Value |
+-------------------------------------+-----------------+
| interpreter_mode | INTERPRET_FIRST |
| interpreter_mode_sampling_threshold | 1000000 |
+-------------------------------------+-----------------+
2 rows in set (0.00 sec)

Change current mode:
rapids> set interpreter_mode=compile;
Query OK, 0 rows affected (0.00 sec)

Database Test Guide

Database Test Guide

rapids> show variables like '%interpreter_mode%';
+-------------------------------------+---------+
| Variable_name | Value |
+-------------------------------------+---------+
| interpreter_mode | LLVM |
| interpreter_mode_sampling_threshold | 1000000 |
+-------------------------------------+---------+
2 rows in set (0.00 sec)

8、 High availability test

Availability group is composed of a group of leaves that store
redundant data to ensure high availability. Each availability group
contains the copy of each partition in the system, some as primary
partition and some as copy partition. At present, RapidsDB can support
two availability groups at most. The user can use redundancy_level on the
main aggregator to set the number of availability groups.

Partition placement mode of RapidsDB is paired mode, where each
leaf of availability group has a corresponding paired node in another
availability group. The same partition set is shared by this leaf and its
paired leaves, but main partition is averagely distributed among them. In
case of fault, copy partition of paired leaves of the leaf is automatically
updated by RapidsDB.

There are three nodes at the cluster, and two leaf nodes at each node:
rapids > show leaves;

Host Port Availability_GroupPair_HostPair_Port State
Opened_ConnectionsAverage_Roundtrip_Latency_msNodeId
---- ---- ------------------ --------- --------- ----- ------------------ ---------------------------- ------
192.168.0.88 3307 1 NULL NULL online 9 0.264 5
192.168.0.88 3308 1 NULL NULL online 9 0.218 7
192.168.0.89 3307 1 NULL NULL online 9 0.202 9
192.168.0.89 3308 1 NULL NULL online 9 0.192 11
192.168.0.93 3307 1 NULL NULL online 9 0.172 13

Database Test Guide

Database Test Guide

192.168.0.93 3308 1 NULL NULL online 9 0.149 15

6 row(s) returned (0.00 sec)
Firstly, we prepare the null leaf node, i.e. leaf node installed and

without allocated group. Among above six leaf nodes, we remove three
leaf nodes, which constitute three null leaf nodes:
rapids > remove leaf '192.168.0.88':3308;
rapids > remove leaf '192.168.0.89':3308;
rapids > remove leaf '192.168.0.93':3308;

Then, variable is set:
rapids >SET @@GLOBAL.redundancy_level = 2;

After setting, leaf node should be added to different groups (please
remember the sequence for adding leaf node and don’t pair leaf nodes on
the same node. For example, leaf node at 88 nodes matches leaf node at
89 nodes):
rapids >ADD LEAF root@'192.168.0.89':3308 INTO GROUP 2;
rapids > ADD LEAF root@'192.168.0.93':3308 INTO GROUP 2;
rapids > ADD LEAF root@'192.168.0.88':3308 INTO GROUP 2;

We can view specific information through show leaves. Each leaf
node has a corresponding backup leaf node. Then, we can create the table
and database normally:

rapids > show leaves;
Host Port Availability_GroupPair_HostPair_Port State

Opened_ConnectionsAverage_Roundtrip_Latency_msNodeId
---- ---- ------------------ --------- --------- ----- ------------------ ---------------------------- ------
192.168.0.88 3307 1 192.168.0.89 3308 online 9 0.264 5
192.168.0.89 3307 1 192.168.0.93 3308 online 9 0.202 9
192.168.0.93 3307 1 192.168.0.88 3308 online 9 0.172 13

192.168.0.89 3308 2 192.168.0.88 3307online 9 0.2223
192.168.0.93 3308 2 192.168.0.89 3307online 9 0.1142
192.168.0.88 3308 2 192.168.0.93 3307online 9 0.3618

6row(s) returned (0.00 sec)
If you want to view partition of the host and the secondary, please

enter show partitions on tpch; and be sure to enter the command of
rebalance partitions on tpch; after data loading to balance the data. After
server downtime and completion of cluster recovery, rebalance should be
implemented. (note: tpch is the name of database)

9、 Concurrent Test

Concurrent performance can be tested through JMeter, which can
also be used as a tool for making numbers randomly to satisfy the
simulation test of customer business data. Download address is shown
below. For installation package and specific jar package used during

Database Test Guide

Database Test Guide

configuration, please refer to the appendix:
http://192.168.10.6:8080/sales_presales/%e4%ba%a7%e5%93%81/%e4
%ba%a7%e5%93%81%e5%ae%89%e8%a3%85%e6%96%87%e6%a1%
a3/RapidsDB%e5%8e%8b%e5%8a%9b%e6%b5%8b%e8%af%95/%e5
%ae%89%e8%a3%85%e4%bb%8b%e8%b4%a8/

The following describes the installation and use of JMeter.
9.1 Window installation and use

Firstly, apache-jmeter-5.3.zip downloaded and installed well is
unzipped to any non-Chinese disk directory. Then, link variables are
configured:

Computer desktop----computer----attribute----advanced system ---advanced---

system environment variable

Secondly, among user variables, we create the variable named
“JMETER_HOME”, and variable value is E:\apache-jmeter-4.0 (i.e. the
address of directory for unzipping files)

Finally, jmeter.bat in the directory of bin is operated to pop up two
screens, i.e. command window and JMeter window, which means
successful installation.

Step 1: Options-choose language- select simplified Chinese.
Step 2: create test plan, name TestPlan and add the driver. Among

them, if RapidsDB needs to be tested, RapidsDBjdbc driver should be
added, such as rapids-jdbc-4.0.jar. In case of rpdsql test, you may add

Database Test Guide

Database Test Guide

rpdsql.jar or directly add mysql driver package. The figure shows cases
for adding mysql driver packages.

Step 3: right-click “TestPlan”, click “Add”“Thread”, and select a
thread group.

Fill in the number of threads (number of concurrent threads), and
cycle number:

Database Test Guide

Database Test Guide

Step 4: add JDBC Connection Configuration

Test configuration of connector named con among RapidsDB:
DatabasesURL: jdbc:rdp://192.168.20.42:4333/connector=conn
JDBC Driver class: com.rapidsdata.jdbcdriver.Driver
Username: RAPIDS
Password: rapids

Test configuration of database named test among rpdsql:
DatabasesURL: jdbc:rpdsql://192.168.20.42:3306/test
JDBC Driver class : com.rpdsql.jdbc.Driver
or (please note that there is no blank during filling-in)
DatabasesURL: jdbc:mysql://192.168.20.42:3306/test
JDBC Driver class : com.mysql.jdbc.Driver

Step 5: right-click “thread group”, select “add”, “sampler” and click
JDBC Request

Database Test Guide

Database Test Guide

Fill in SQL statement and type to be executed:

Step 6: right-click TestPlan to select “add”, “monitor”, and report
result, such as aggregation report, view observation tree, and view the
form.

Step 7: click the execution button, i.e. green triangle, and save files
during the first run.

View various report results:

Database Test Guide

Database Test Guide

9.2 Linux installation and use

Firstly, downloaded apache-jmeter-5.3.tgz is uploaded to
server/opt/software:

[root@node1software]#ll

-rw-r--r--. 1 root root 67364344 Aug 13 11:16 apache-jmeter-5.3.tgz

Secondly, it’s unzipped to /opt/module:
[root@node1software]# tar -zxvf apache-jmeter-5.3.tgz -C /opt/module/

Finally, it’s necessary to operate the script and view the version:
[root@node1software]# cd /opt/module/apache-jmeter-5.3/bin

[root@node1software]# ./jmeter.sh -v

Instructions on parameters of script operation:
-h help ->print the useful information and quit
-n non-GUI mode ->operate JMeter in non-GUI mode
-t test file ->JMeter test script file to be operated
-l log file ->files recording results

Database Test Guide

Database Test Guide

-r remote execution ->start remote service
-H proxy host ->set the proxy host used by JMeter
-P proxy port ->set port number of proxy host used by JMeter

The format of script file in Linux to be executed is .jmx. Project
configured in Windows can be exported to a jmx format file and then
uploaded to the server for execution.

Execute the script and view the results:
[root@node1 apache-jmeter-5.3]# bin/jmeter -n -t ./jobs/test.jmx -l ./result/res1.txt &

[root@node1result]# cat res1.txt

9.3 Create data by JMeter

Firstly, we introduce the data creation in WINDOW, and number in
the range is simulated by the system and inserted into the table. When
table ta is taken as an example, ta table structure is as follows:
create table ta (

uuidvarchar(10),companyid int(1),loansign int(1),a001 varchar(10),a002 varchar(10),a003

Database Test Guide

Database Test Guide

varchar(10),a004 varchar(10),a005 varchar(10),a006 varchar(10),a007 varchar(10),a008

varchar(10),a009 varchar(10),a010 varchar(10),key (companyid),key (loansign),

primary key (uuid));

In the “thread group”, select “add”, “sampler” and click JDBC
Request and enter in sql (note: there may be multiple JDBC Requests,
which can be manually opened and closed; if they are open, it’s necessary
to concurrently write-in along with synchronous execution of multiple
tables):
insert into ta(uuid,companyid,loansign,a001,a002,a003,a004,a005,a006,a007,a008,a009,a010)

VALUES

(${cnt},${__Random(0,1,)},${__Random(0,1,)},${__Random(1,999999999,)},${__Random(1,99

9999999,)},${__Random(1,999999999,)},${__Random(1,999999999,)},${__Random(1,9999999

99,)},${__Random(1,999999999,)},${__Random(1,999999999,)},${__Random(1,999999999,)},

${__Random(1,999999999,)},${__Random(1,999999999,)})

The number of threads is set as 100, which represents 100

concurrent write-ins:

It’s faster to write-in through script execution in Linux. It’s
recommended to export jmx files after configuration of Windows, and
upload the file to the server for execution, which can save more time.

Database Test Guide

Database Test Guide

10、 Backup and Restoration

Firstly, we backup the database (backup the single table):
rapids > BACKUP testdata TO "/home/testdata";

Then, database is restored:
rapids > drop database testdata;

10 row(s) returned (3.03 sec)

rapids > RESTORE DATABASE testdata from "/home/testdata";

1 row(s) returned (170.85 sec)

11、 Connect JAVA

JDBC driver package is provided by the database for connecting
JAVA. The following describes database connection and usage at JAVA.
For specific jar package and project files, please refer to the appendix.

After creation of new project, it’s necessary to firstly associate the
latest JDBC driver package to thelibrary, right-click lib file to click
Configure Build Path in the Build Path, and then add the latest JDBC to
them:

After environment configuration, it can be seen from JAVA class
code that corresponding url, user name, password and name of the
connector have been entered, and RapidsDB has been installed at IP:

Database Test Guide

Database Test Guide

192.168.252.101 of url, with port 4333, user name of rapids, and
password of rapids, and the connector named DSJZX has been created in
RapidsDB:

Then, it’s necessary to execute SQL statement for adding, deletion,

alteration and query, and test whether connection is completed. Results

printed below can be used to prove successful connection of database and

execution:

Database Test Guide

Database Test Guide

Database Test Guide

